
¢
.'t-/" _ f "-c"f<'!-

iF-'-! x

DATA MA NA GEMEN T S YS TEM

(DMS) TESTBEDUSER'S MANUAL
DEVELOPMENT

-- (NASA-CR-IaT3QI) 0ATA MANAGEMENT SYSTEM NQI-130?)

(DMS) TESTBE_ USER'S MANUAL DEVFLOPMENTt

V_LUMES I ANO 2 ($oftecb) 98 p CSCL 09B
_ Unclas

G3/bl 0312_34

J, G. McBride
SofTech, Inc.

N. Cohen
SofTech, Inc.

........... A3ctober 31, 1986

k.--

Cooperative Agreement NCC 9-16
:Research Activity No. SE.2

© ©
/ /

Research Institute for Computing and Information Systems
University of Houston - Clear Lake

T.E'C'H'N'I'C'A .L R.E.P.O.R.T

= ±== := = =

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space

Center and local industry to actively support research in the computing and i

information sciences. As part of this endeavor, UH'Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered into £

a three-year cooperative agreement With _-Clear Lake beglnnifig in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 92 i 6, computing and educational facOities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of

faculty and students from _ch of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide add_tlonal sources of expertise tO :
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information

sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for _nduct_ng_the research, provides technical and

administrative support to coordinate the research, and integrates technical results

into the cooperativegoa!s o(_UH-Clear _e asld NASA/JSC,

DATA MANAGEMENT SYSTEM

(DMS) TESTBED USER'S MANUAL
DEVELOPMENT

I

I

m_
t

m

BB

m

Nil

Ill

R

m
m

Izl

Um

M

M

m

im

Z

w

m

II

m
m

D

g

m

um _

Preface

This research was conducted under the auspices of the Research Institute for
Computing and Information Systems by Sof'l'ech, Inc. The project was under the

overall technical direction of Dr. Charles McKay, Director, Software Engineering
Research Center at the University of Houston-Clear Lake. Primary research for this
project was done by John McBride, Manager of the Sofrech Houston Operations and
Norman Cohen, Sofrech Systems Consultant.

Funding was provided by the Avionics System Division, Engineering Directorate,
NASA Johnson Space Center through Cooperative Agreement NCC 9-16 between
NASA/JSC and UH-Clear Lake. The NASA Technical Monitor for this activity was
Gary K. Raines, Head, Data Processing Section.

The views and conclusions contained in this report are those of the authors and
should not be interpreted as representative of the official policies, either express or
implied, of NASA or the United States Government.

w

w

U

m

i

iB

i

U

i

i

i

i

ii

i

i

i

i

HI

ms

ScIFrecH

DATA HANAG_4_ SYSTEM (DMS)
TF_BED USER'S MANUAL

DEVELOPMENT

m

VOLb_BS I & II

_O-092

31 OCTOBER 1986

Prepared for

Avionics Systems Division, Research and Engineering
Johnson Space Center

Prepared by

SofTech, Inc.
in coordination vith the

Research Institute
for

Computing and Inforsation Systels
at the

University of Houston, Clear Lake

w

w

w

SofTech, Inc
ORIGINAL PAGE IS

OF POOR QUALITY

mm

I

II

um

m

Jim

R

N

ml

mm

I

il

m

m
MI

ii

z

ii

!

U

m

I

VOLUME I

CO_ENTS ON Tm_
NETgORK COMMUNICATIONSERVICES

INT_

. TIN_L_ USER'S MANUAL FOR DATA MANAGEMENT
SYSTEM (DNS) TEST BED

m
w

w

m

_=

sO -TecH

m

TABLE OF CONTENTS

Section

INTRODUCTION

REVIEW OF POLICY STATEMENTS

REVIEW OF THE TINMAN DMS USER'S MANUAL

3.1 Avoiding Active Polling

3.2 The Type of Datagram Contents

3.3 Avoid Use of Physical Addressing Schemes
3.4 The Need for More Basic Services

3.5 Scope of the DATAGRAM Generic Package

3.6 Assembly-LanKuage-Style Records

3.7 Support for Multilevel Security

2-I

3-1

3-1

3-2

3-3
3-3

3-5

3-6

3-7

I

[]

m
u

mm

u

m

l
J

mm

I

m

I

I

g

==

mm

V0-092 Vol. I iii

PRF=,CED!NG PAGE BLANK NOT FILMED

SOFTeCH
U

W

i

Section 1

m

INTRODUCTION

w

This volume provides a critical review of the network communication

services contained in the Tinman User's Manual for Data Management System

(DMS) Test Bed (hereinafter, referred to as the Tinman DMS User's Manual)

prepared by the Lockheed Engineering and Management Services Company, Inc.

under Contract NAS 9-15800, Job Order 34-208. The review is from the

perspective of .applying modern software engineering principles and using the

Ada language effectively to ensure the test bed network communication services

provide a robust capability.

Overall the material on network communication services reflects a

reasonably good grasp of the Ada language. Language features are

appropriately used for most services. Design alternatives are offered to

provide improved system performance and a basis for better application

software development.

Section 2 contains a revlev and suggested clarifications of the Statement

of Policies and Services contained in Appendix B of the Tinman DMS User's

Manual; Section 3 is a review of the Network Communication Services; and

Section 4 contains concluding comments.

w V0-092 Vol. I I-i

SO TecH

Section 2

REVIEW OF POLICY STATEMENTS

Ve are interested in clarifying the intent of certain statements of policy

contained in Appendix B of the Tinman DMS User's Manual. For each such

statement we provide a discussion below explaining why a clarification is

needed and suggest how the statement might be rephased.

B

m
m

I

Statement t3:
I

The DMS design must isolate the subsystems so that malfunctions or changes

to the software in one subsystem do not affect the operation of any other

subsystem.

Discussion:

A subsystem may be built in such a way that it will not function correctly

if it does not receive the data it is expecting from another subsystem.

While the DMS can provide tools for building robust subsystems, the use

made of these tools is beyond the control of the DMS. A change to one

subsystem affecting the logical structure of its communication with

another subsystem may indeed affect the operation of the other subsystem.

Recommendation:

Replace with:

The DMS design must isolate the subsystems so that:

mm

i

i

m,,

l

B

=_

m

I

R

a. changes to the software in one subsystem do not affect the operation

of any other subsystem, provided that the changes preserve the

mm

w

W0-092 Vol. I 2-1

SO 'TeCH
m
I

B

logical communications channels of the first subsystem and the

protocols for using each channel;

b. software malfunctions in one subsystem do not affect the operation of

any other subsystem, except insofar as the second subsystem fails to

receive data it was expecting from the first subsystem.

Statement #5:

The DMS will support real time communications that do not exceed specific

transport delays (minimum and maximum). Subsystems requiring more

capability must provide their own dedicated bus. The DCN component of the

DMS will support a maximum (20ms.) single packet transfer time from point

to point (subsystem to subsystem) within the same LAN. This is to include

all overhead associated with message transfer through all seven ICY layers.

Discussion:

We assume there is no requirement for the application programmer to

specify a maximum packet transfer time explicitly. For example,

priorities can be associated with communications channels, with an

implicit correspondence between priorities and transfer time.

Recommendation:

m

m

Replace the second sentence with:

The DMS may associate maximum transfer times with virtual circuit priority

levels so that a subsystem can specify the maximum allowable circuit time

by requesting a virtual circuit at a given priority level. A subsystem

requiring a smaller transfer time than that associated with the highest

priority level must provide its own dedicated bus.

W0-092 Vol. I 2-2

SOFTeCH

Statement t6:

Near real time communications viii be isolated from other types of data

communications on the network (e.g., by unique identifiers, by

multiplexing the available bandwidth into near real time services and

non-near real time services, etc.). Connection establishment for near

real time communications must allow bypassing of logical name to physical

address translations and minimize network transport delays associated with

connection establishment of human users.

Discussion:

There are two ways to interpret the sentence "Connection establishment for

near real time and non-near real time communications must allow bypassing

of logical name to physical address translations":

I.

.

Establishment of the connection allows translation to be bypassed

every time actual data is sent. (Translation may be done once at the

time of connection, and the translated (physical) address is saved

for use in routing data.)

It must be possible to bypass address translation in the actual

establishment of the connection, that is, to establish a connection

to a physical address.

We assume the first interpretation is intended.

Recommendation:

Replace the second sentence with:

When the DMS establishes a connection for near-real-time communications,

it must provide the communicating subsystems with "handles" uniquely

identifying the connection. During establishment of the connection,

logical network addresses may have to be translated to physical addresses,

but the "handle" will allow subsequent access to the communication channel

without further translation.

W0-092 Vol. I 2-3

SO ecH

m

m

m

mm

I

i

[]

I

I

m

B

m

i

U

m

m
N

J

D

Statement 17:

It must be possible to prioritize messages so that messages with higher

priority are handled first. A receiving subsystem must have the ability

to examine the incoming message queue to determine each message's

attributes (e.g., priority, origin, relative position in the queue, time

tag, time out value and size). It should be possible for a subsystem to

remove a message from the incoming queue or change its priority.

Discussion:

u

This policy statement implies the existence of certain requirements that

are not stated explicitly elsewhere, including the routine logging of time

tags, sender's identification, and message size; and the ability to

specify a time-out value when sending a message. Are these indeed

requirements, or Just examples of the kind of attributes an incoming

message might have? Must these capabilities be provided for all messages?

Recommendation:

Delete the second and third sentences.

Statement #Ii:

Data viii only be transmitted in response to a request. In general,

subsystems will not broadcast data or periodically send data unannounced

to another subsystem. Exceptions to this policy will only be allowed in

emergency situations.

w

m

i

V0-092 Vol. I 2-4

SOFTeCH

w

Discussion:

The crux of this policy statement is that a subsystem should only receive

data it anticipates receiving. In particular:

It may sometimes be reasonable to broadcast a particular kind of message

to a set of subsystems all designed to handle that kind of message. This

capability must be supported even if the principle of isolating subsystems

dictates that it be used sparingly.

Even in emergency situations, messages should only be broadcast to those

subsystems designed to look for the messages and respond sensibly, even if

the only action is to disregard the message. A subsystem expecting only

attitude readings on a certain channel will not recognize a loss-of-

pressure alarm sent on that channel.

Reco_.endation:

Replace with:

Data will only be transmitted to subsystems designed to receive and handle

the data. (This handling may consist of recognizing and then ignoring

certain kinds of messages.) Transmission of a given kind of data to a

given subsystem will be allowed only if explicitly permitted by that

subsystem's ICD.

Statement |12:

Subsystems communicate with other subsystems, not with processes within a

subsystem. If a process in subsystem A needs information from a process

in subsystem B, it addresses its request to subsystem B who is then

responsible for determining which process will respond to the request.

i

i

mm

i
I

m

mm

[]

m
i

m
M

m

mm

[]

I

m

lain

_0-092 Vol. I 2-5

SOFTecH
I

m
m

m
mm

u

The NOS will route messages to subsystems, not processes within a

subsystem. The intent is that if subsystem A needs information from a

process in subsystem B it addresses its request to subsystem B who is then

responsible for determining which process will respond to the request.

Bowever, in the event that the need for direct process to process message

routing is identified, the following option will be provided. Subsystem A

may optionally append the name of the process in subsystem B (to which the

message is to be routed) to B's address. The NOS will still route to

subsystem B but subsystem B viii use the appended process name to place

the message in the proper incoming queue without the necessity of

determining which process is to service the request.

Discussion:

Irrespective of its internal structure, a subsystem may have several

logical input and output streams (communications channels). When we say

that the NOS routes messages to a subsystem, we mean that the NOS routes

messages to particular logical input streams that are part of the

subsystem's interface. Internally, a subsystem may delegate the task of

establishing and using communications channels to particular processes.

The practical effect is that messages are routed directly to the processes

that handle them, but the abstract view is that the receiving subsystem

has one or more logical input streams and that the message was routed to

one of these. This view neither precludes or requires a subsystem design

in which there is one logical input stream and a central dispatching

process that passes a message along to a particular task based on its

contents.

Recommendation:

Replace with:

Subsystems request connections to other subsystems, not to processes

within another subsystem. However, messages may be sent and received on

w

WO-092 Vol. 1 2-6

SO 'TeCH

behalf of a subsystem by particular processes within that subsystem. This

results, in effect, in direct process-to-process communication even though

each subsystem is oblivious to the internal structure of the other

subsystem. One process within a subsystem may route a message to another

process in the same subsystem based on the contents of the message, but

this detail about the internal implementation of the subsystem is

irrelevant to other subsystems.

Statement 113:

By adhering to the intent of policy statement 12 above the structure of a

subsystem can be hidden from the BIU and from human and software users.

Changes to the internal structure of a subsystem, especially those

involving the removal or renaming of processes will then be transparent to

human and software users. Furthermore, it will allow the NOS to maintain

configuration data at the subsystem level rather than the process level.

This policy can be stated more generally as: It is the responsibility of

each subsystem to manage its own resources, including the determination of

which process will service which request.

Discussion:

The approach suggested for policy statement #12 supports the fulfillment

of policy statement #13. The logical input and output streams of a

subsystem must be distinguished from the internal structure. Logical

input and output streams are part of a subsystem's interface, but its

process structure Is an internal implementation concern. Processes can be

added or removed at will, as long as some process continues to handle each

logical stream, but addition or removal of a potential stream connection

is an external change that may affect other subsystems. (Virtual circuits

may be created and removed dynamically during subsystem execution, but

only if the logical input and output streams to which they are connected

are part of the subsystem's interface.)

U

mR

I

mm

m

BB

mm

mll

i

I

I

m

_0-092 Vol. I 2-7

SOFTeCH
I

I

Recommendation:

Add at end:

w

m

w

i

(Addition or removal of processes must be distinguished from addition or

removal of potential communication channels from a subsystem's ICD. While

the former is an internal change to a subsystem, the latter is external

and may affect other subsystems.)

Statement t14:

When subsystem A attempts to establish a connection to another subsystem

B, B must respond to A before it can be assumed that a connection exists.

Discussion:

We assume it is not necessary for B to respond directly and explicitly to

A. For example, the NOS routine called by A to establish a connection

might wait for a response from B before returning a circuit ID to A. This

ensures that A cannot do anything until a connection has been established.

From A's point of view, the effect of the call is simply to obtain a

circuit ID, and the communication with B is hidden.

Recommendation:

Replace vith:

When subsystem A attempts to establish a connection vith subsystem B, B

must also inform the NOS of its readiness to establish a connection before

A is permitted to use the connection.

L

N0-092 Vol. I 2-8

so 'TecH

w

Statement |28:

Each subsystem should have a mnemonic name. Remote users (human and

subsystem) should be able to address messages to the "ECLSS" or "GN&C"

subsystems regardless of where they are physically located. Each LAN and

each region should have a mnemonic identifier so communications from

processes in other LANs can logically address transmissions across the

network. The DCN will translate these logical names into and from unique

physical addresses.

Discussion:

Policy statements 26 and 27 wisely call for hiding the physical location

of network resources from users, and the requirement in policy statement

28 to be able to name subsystems by mnemonic names further supports this

policy. Besides simplifying the user interface, this approach provides

flexibility to change the physical network configuration without affecting

subsystems.

However, we do not understand the need for a name consisting of a region

mnemonic and a LAN mnemonic. Such a name is not a logical name, but a

physical name, specifying the location of a subsystem within the network.

A true logical name uniquely identifies a subsystem within the network

without reference to the LAN containing the subsystem or the region

containing the LAN. Indeed this allows different parts of the same

subsystem to be split across the DMS network.

Recommendation:

Remove the third sentence.

m
u

M

m
mm

mm

I

Im

roll

D

um

m
I

m

m

Q

mm

W0-092 Vol. I 2-9

SOFTeCH

m
m

g

m

Statement #33:

w

The design of the IOC DMS will be based on common subsystem and BIU

processor types. However, the design should in way require a common

processor type. It should be sufficient that they have the same external

interfaces and obey common communications protocols. Also, the design of

the IOC DMS must accommodate communications with heterogeneous LAN types

within regions to Include heterogeneous gateways. The intent is to

maximize commonalty without restricting flexibility to upgrade technology.

Discussion:

We presume the second sentence is meant to read "However, the design

should in no way require a common processor type."

Recommendation:

m

Add the word "no" to the second sentence:

However, the design should in no way require a common processor type.

Statement t35:

Data types, i.e., machine representations (including floating and fixed

point and bit and byte ordering) will be pulled from the Federal Standards

in order to limit the number of and clearly state the representations

accepted for layer 6. "Data format conversion is not a DHS function.

Discussion:

We are concerned about the reference to "limiting" the representations

accepted for layer 6. Ada supports the definition of new problem-orlented

data types, and it will often be useful to transmit objects in these data

types from one subsystem to another. However, it is impossible to

w

m

_O-092 Vol. I 2-10

SOFTeCH

enumerate in advance all data types and to specify a representation for

each. Resolution of this problem requires stepping back from the DMS

requirements and considering requirements for the compilers that will be

used to compile subsystems.

n

m

A standard binary representation for transmission between subsystems is

indeed needed. It would be wasteful of processor time and bandwidth to

convert all complex data into textual form for transmission. It would be

inconsistent with the software engineering principles of data abstraction

and Informatlon-hldlng and the intended use of Ada, and inimical to

program reliabillty and maintainability, to require application programs

to decompose abstract data into its constituent elements and transmit

these elements individually.

Rather, standard representations can be provided for scalar data types

(numeric and enumeration types), and standard rules can be provided for

constructing the representation of composite types (array and record

types) from the representation of their components. (Example: "The

representation of a record consists of the representations of the record

components existing in that record, in order of declaration, with each

component starting on a byte boundary; arrays are stored in ascending

order with the last index varying most rapidly and the representation of

each component beginning on a byte boundary.") In addition to scalar and

composite types, the Ada language has access types, task types, and

private types. The transmission of access-type and task-type values from

one Ada main program to another is generally not meaningful and should not

be supported. Each private types has an underlying representation as a

scalar, composite, access, or task type.

In the spirit of policy statements 2 and 35, it is not necessary to

restrict Space Station software developers to Ada compilers that always

use the standard representations internally. If necessary, the Ada

runtlme system can perform the necessary conversions on incoming and

outgoing data. Alternatively, to ensure that conversion can always

mm

mm

mm

m
I

mm

mm

m

h
i

z
i

_m

J

W0-092 Vol. I 2-11

SOFTeCH

i

m

m

m

be bypassed, NASA might impose a less stringent requirement: that

compilers must support representation specifications to a sufficient

degree that a proErammer can stipulate the network standard representation

for objects of a particular type. (Representation specifications are a

low-level feature of the Ada language that control the internal

representations for programmer-defined data types. Normally, a compiler

may choose which representation specifications to obey and which to

reject, so not all representation specifications are recognized by all

compilers. Certain matters of internal representation, such as the order

in which array components are stored, are beyond the control of

representation clauses. Compilers must either conform by default to the

network standard in such matters or else provide some means, such as an

implementation-deflned pragma, for the programmer to request conformance

in particular cases.)

w

- =

Whenever a high-level, abstract data type (e.g., a type for representing

celestial coordinates) is of interest to more than one application, we

would expect the type to be defined in a package residing in a

network-wide library. Individual subsystems (i.e., Ada main programs) can

import the type definition by a with clause for that package.

Representation specifications for the type, located in the importing

package, will ensure that all subsystems using the type have a common

representation for it, so internal representations can be transmitted from

one importing subsystem to another without conversion. Network standards

would ensure that these representation specifications are accepted by the

compilers used for each subsystem.

Recommendation:

Remove the words "limit the number of and" from the first sentence.

E

m

m

m

u

m

w
_O-092 Vol. I 2-12

SOFTeCH

w

Section 3

REVIEg OF THE TINMAN DMS USER'S HANUAL

The following sections identify the major areas of concern in the Tinman

design. A discussion of each area is provided with recommended changes.

3.1 Avoidin_ Active Polling

The datagram facilities require active polling for incoming messages.

This method of communication is efficient for systems in which data is

expected to arrive at a rate that is of the same order of magnitude as the

polling rate. However, if the average message arrlval rate is much lower than

the polling rate then the process is inefficient and uses more computer

resources than necessary. Also of concern is the impact the polling model has

on the design of the application software that uses network communication

services. The polling model has its basis in sequential processing languages

and encourages a sequential style of design for applications, even when the

application has naturally occurring concurrency. This in turn results in an

application design that is difficult to modify.

A better model for communication is one that readily supports both

sequential and concurrent design styles. The Tinman model could support both

styles if the RETRIEVE call were to wait for up to some specified maximum

period for an incoming datagram. If a datagram were to arrive within the

period, then it would be returned; otherwise a time-out exception would be

raised. The retrieving process would be blocked during the time-out period.

If the receiving subsystem had useful work to do while waiting for an incoming

datagram, it could use Ada's powerful task'synchronization primitives. The

task calling RETRIEVE could be blocked while another task in the subsystem

continued to execute. The time-out period associated with the RETRIEVE could

be used to either avoid a deadlock situation or to return immediately for

highly tlme-critlcal applications that did not use tasking. A time-out period

i
i

z
D

m

mR

I

k

m

mm

m

m

i

B

m

V0-092 Vol. I 3-1
SOFreCH

mmm

I

g

F

of zero seconds would behave like the polling model. Thus both sequential and

concurrent style designs could be easily achieved.

3.2 The Type of Datagram Contents

w

m

w

m

l

w

mu

w

m

The Tinman manual anticipates that datagrams of different types will all

arrive in the same incoming queue. By allowing all datagrams to arrive on the

same queue modifications that do not change the logical communications

interface can be made to a subsystem without affecting other subsystems.

Different instantiatlons of the generic package DATAGRAM will provide versions

of RETRIEVE for receiving datagrams of different types. In some respects,

this is a very sensible approach. The Ada language encourages the definition

of new abstract data types to model application entities, and it is reasonable

to expect that applications will communicate by passing values of these

abstract data types as messages. An unlimited number and variety of

application-oriented data types are possible, so there is no way for the NOS

specification to anticipate all possible messagd types in advance.

In general, it is difficult and possibly inefficient to manage any queue

unless the messages in the queue are of a fixed type (in some cases a record

type with a fixed number of variants). If the messages are of different types

then they must first be examined to determine their type before the

appropriate instantiation of the RETRIEVE can be called and an appropriate

routine can be invoked to handle the message. As the number of message types

increases, the logic involved in this decision becomes more complex,

increasing the likelihood of error. Also, if the subsystem is distributed

across the DMS network, the retrieving process may be located on a different

node than the routine that handles the message. In this case, the retrieving

process must then send another message across the network, increasing network

traffic.

For improved modularity it is more appropriate to have distinct queues for

each type of message. The receiving subsystem should expect incoming messages

V0-092 Vol. I 3-2
SOFTecN

of specific types on specific queues. Since the queues are typed, it is

unnecessary to first examine the message to determine the correct

instantiation of RETRIEVE and a central dispatching routine is not required.

Also, in a distributed subsystem, messages can be routed by the NOS directly

to the network node which supports the function that handles the message.

Changes to the subsystem can still be made without affecting other subsystems

as long as the logical communications interface requirements have not changed.

I

m

M

3.3 Avoid Use of Physical Addressin_ Schemes

As noted earlier in the discussion of policy statement 28, it is unwise to

designate a subsystem address in terms of the region and LAN in which it is

physically located. The definition of ADDRESS TYPE for a subsystem address

includes the physical location of the subsystem. This approach makes

restrictive assumptions that may prevent the distribution of a subsystem over

more than one LAN or region if this eventually becomes feasible. It will also

require massive reprogramming every time the physical location of a subsystem

changes, since all references to the subsystem address must be changed. A

wiser approach is to give each subsystem a logical name that is translated by

the N0S into a physical location, based on tables maintained by a network

administrator.

mm

m
h

mm

m

m

mm

3.4 The Need for More Basic Services

The Tinman design provides a number of powerful facilities that may be

needed for certain applications, including the ability to scan the incoming

message queue and the automatic establishment of a bi-directional connection

every time a connection is established. However, this design may impose an

unwanted overhead on applications that do not require such sophisticated

capabilities. A better approach is to provide basic NOS services that are

simple and efficient and can serve as building blocks for implementing more

sophisticated services, rather than to try to anticipate the complex

I

U

i

I

U

W0-092 Vol. I 3-3
SOFTeCH

m

mm_

L
U

combinations of features that some application writers might find useful. As

subsystem communication requirements crystallize, utilities can be written on

top of the basic network services to provide commonly needed higher-level

capabilities.

Consider the SCAN command, for example. We have doubts about the wisdom

of including such sophisticated queue-manipulation and

message-receipt-scheduling operations as basic network communication services.

Here are some reasons:

=

w

m

io

a

o

We expect this functionality will be required by few subsystems, but
it will add to the complexity and overhead of network communications

even for subsystems that do not require such functionality. Much of

the time, for example, one subsystem will expect to receive messages

from another particular subsystem, so it will be wasteful to have the

sender and receiver identified in each message. Likewise, few
applications would require all the attributes described (such as

CLASS, TIMETAG, or STATUS) to be sent with every message.

Sophisticated manipulation of the incoming message queue and

extraction of higher priority messages are presumably aimed at the

timely processing of important messages, but ve expect examination,

analysis, and manlpulation of the queue to itself be quite
time-consuming. In most cases, a subsystem is more likely to provide

timely service by quickly removing items from a queue in order of

arrival rather than by trying to schedule the handling of enqueued

messages. The effect of messages with different priorities can be

achieved by the provision of multiple communication channels with

different priorities. The receiving subsystem would always look for
messages on high-priority channels first.

For subsystems that must service messages in some order other than

order of arrival, queue manipulation can be provided by the subsystem

itself (perhaps wlth the aid of general-purpose NOS utility that is
not part of the network communication services). Such a subsystem

would have a process whose sole responsibility is to remove messages

from an incoming queue and insert them in a subsystem-internal data

structure as quickly as possible. The subsystem would have complete
control over the data structure, including the removal of messages

from the data structure so they can be processed.

V0-092 Vol. I 3-4

II

SOFTeCH

1 Ada's powerful data abstraction facilities allow the structure of a

message to be arbitrarily complex. If the application requires it,

information like the time of transmission, the identity of the sender

and other attributes can be included in the sessage.

Similarly, consider the automatic establishment, every time a virtual

circuit is established to connect two subsystems, of incoming and outgoing

queues for both subsystems. By default, subsystems should be able to request

a virtual circuit for communications in one direction. In many cases this may

be all that is required. Given such a capability, it is easy to implement

bi-directional communications.

m

g

i

3.5 Scope of the DATAGRAM Generic Package

Each instantiation of a generic package creates a nev and distinct

instance of every entity provided by the generic package. The point may be

moot given the message-type problem identified earlier, but some of the

facilities currently provided by instances of DATAGRAM should not be declared

in a generic template. It is logically necessary for each instantiation to

produce a new DATAGRAM TYPE and new versions of SEND and RETRIEVE. However,
w

it would_makesense for there tO be oniy One MESSAGE_COUNT type for use by all

instances of the generic package, and one HEADER TYPE (so that a common set of

header-manipulating utilities, applicable to all types of datagrams, could be

written). Similarly, new ADDRESS_BLOCK and ADDRESS_LINK types, and new

MULTICAST and DELETE_MN procedures, should not be created for each datagram

type. (It is not clear whether the declaration of TIME STAMP is a subtype

declaration with "type" inadvertently written instead of subtype, in which

case the same subtype is shared by all instances of the package, or a derived

type declaration with the word "new" inadvertently omitted, in which case each

instance provides a distinct TIME STAMP type. Logically, a single type is

more appropriate.) There should be one set of exceptions raised by

subprograms in all instances of the package, not distinct exceptions for each

instance.

m

i

=_
mm

m
m

ms

l

I

U

g

i

u

V0-092 Vol. I 3-5
SOFTeCH

I

n

One solution to this problem is to make DATAGRAM a nongenerlc package and

nest a generic package inside of it. 0nly entities like DATAGRAH TYPE, SEND,

and RETRIEVE would be declared in the generic package. Another solution is to

declare in a separate package, say DATAGRAM TYPES PACKAGE, the entities to be

shared by all instances of the generic package DATAGRAH. DATAGRAM would be

given a with clause for DATAGRAM TYPES PACKAGE and Could also include renaming

declarations for the entities provided by DATAGRAM TYPES PACKAGE. This would
w

make it appear that all entities were being provided by each instance of

DATAGRAM, but an entity declared by renaming declarations would be a single

entity, created once and passed along by many instances.

It is hot clear whether SCAN should be provided by the generic package or

made common to all instances. The parameter and result types of SCAN are the

same for all instances. However, if we vlev each instance of the generic

package as creating a distinct queue for datagrams of a particular type, each

instance could provide versions of SCAN for examining that particular

instance's queue.

3.6 Assembly-Lan_nm_e-StTle Records

The HEADER TYPE record component, contained in the DATAGRAM TYPE record,

is used as an assembly-language-style control block. Different subcomponents

are set and examined by different modules at different times, and some

subcomponents, particularly the STATUS component, have multiple uses. Data

flow is obscure and complex, modules using the records become more tightly

coupled than is necessary or desirable, and error-prone protocols are imposed

on each subsystem. HEADER TYPE records should be used only within the NOS,
m

and hidden from users of the NOS. Information to be provided by the sender to

the NOS should be provided through separate in parameters to SEND.

Information to be provided by the NOS to the sender should provided through

out parameters to SEND. Similarly, specific in and out parameters to RETRIEVE

should be used to convey information from the receiver to the NOS and from the

NOS to the receiver, respectively. It is appropriate to group items in a

W0-092 Vol. I 3-6
SOFTeCH

record when the items can be taken together as modeling a single abstract

entity, but the components of HEADER TYPE records do not meet this criterion.
I

3.7 Support for Hultilevel Security
ml

The Tinman user's manual does not address the multilevel security issues

raised by Policy Statement 30. The implications of multilevel security

requirements for network communications require further study. For example,

there may be restrictions on the ability of two subsystems to establish a

connection in a particular direction based on the security level of each

subsystem. This might be reflected in an exception SECURITY VIOLATION that
u

can be raised by the connection-request subprograms. It may also be necessary

to establish virtual circuits with different security levels, implemented by

different kinds of physical connections.

ml
B

EE

m

m

m

m

R

z
M
mm

l
g

m

B

g

m

m
R

V0-092 Vol. I 3-7
SOFTecH

i
m

m
D

m
I

Section 4

CONCLUSIONS

The Tinman User's Manual reflects much careful thought about the problem

of Space Station Network Communications. Our major concerns are confined to

three areas:

u

m

L_

i.

.

,

The requirement for active pollln_ of incomln_ messages. The active

polling requires excessive resources if the rate of arriving messages

is significantly less than the polling rate. This is particularly

problematic if the computing resources are required to perform a

slgnfficant amount of other work. Active polling complicates the

design of applications with naturally occurring concurrent

processing. The use of communication design structures that are

compatible vlth application structures reduces the complexity of the

design of the application, thus reducing the cost of developing and

maintaining the application software. The requirement for active

polling also makes the network communication services less flexible

to the users of those services.

The use of single data queues or virtual-circuit connections for

messages of different types. The use of single datagram queues or

virtual circuit connections may have significant impact if the

subsystem is distributed on the DMS network, since messages received

by the subsystem may have to be retransmltted across the network to

the appropriate process to handle that message type. Furthermore,

the use of a single datagram queue or virtual circuit connection for

messages of different types does not provide a rational structuring

of information. It forces the application programmers to manage

messages of different types. Again, the network communication

services are made less flexible for users.

The remaining hints of physical network configuration in the

structure of lo_ical addresses. Basing the services on a physical

model of the DMS network significantly reduces the flexibility of

system designers, particularly if a subsystem must move to different

physical parts of the network due to design changes or dynamic

reconfiguration. Failure to hide network topology and separate the

concerns of logical and physical viewpoints, will lead to massive

reprogramming if the physical location of a subsystem changes.

W0-092 Vol. I 4-I

I

SOFTeCH

1

VOLUHE II

DESI_ _ATI_S FOR _ _0_

C0__TIONS $_ _ _ DATA _A_

SYS_ (DMS) __

1

1

1

1

1

1

1

=:=

1

1

m

z
1

1

[]

1

SO eCH
1

1

TABLE OF CONTENTS

w

..7

w

w

Section

1

2

INTRODUCTION

NETWORK MODEL

2.1 Physical Network Model

2.2 Logical Network Model

2.3 Mapping of the Logical model Onto the Physical Model
2.4 Users of the NOS

REOUIREMENTS

SERVICES

4.1 Overview

4.1.1

4.1.2

4.1.3
4.1.4

Virtual-Circult Communication

Datagram Communication
Broadcast and Multicast Services

The Role of Tasking

4.2 Specification of Network IO

4.3 Behavior of Network IO Subprograms

4.3.1 Open
4.3.2 Close

4.3.3 Datagram Output File
4.3.4 Datagram Input File
4.3.5 Set Data Unavailable Response
4.3.6 Read
4.3.7 Vrite
4.3.8 End of File

4.4 Summary of Exceptions

4.4.1 Data Unavailable

4.4.2 Status Error

4.4.3 Mode Error
4.4.4 Name Error

4.4.5 Use Error

4.4.6 Device Error

4.4.7 End Error
4.4.8 Data Error

2-I

2-I

2-3

2-5

2-7

4-1

4-3
4-5

4-6

4-10

4-11
4-12

4-12

4-14

4-14

4-15

4-15

4-16

4-16
4-17

4-18

4-18

4-19

4-19

4-19

4-19

4-20
4-20

4-20

_0-092 Vol. II iii

PRBCEDING PAGE BLANK NOT FILMED

OJ='/'ecH

w

TABLE OF CO_S (CONT.)

Sectlon

5 EXAMPLES OF USE

5.1 Processing a Bounded Sequence of Data

5.2 Performing Background Processing Vhile Waiting for

Datagrams
5.3 A File Server

5.4 Converting Arriving Messages to Entry Calls

5.5 Merging Streams of Incoming Messages

5.6 Processing Datagrams of Different Priority

5.7 Using Message Contents to Control Order of Processing

5.8 Using Datagrams to Control Periodic Sampling

5-3

5-4

5-10
5-12

5-16

5-22

5-26

5-31

m

I

m
l

i

I

m

L_

m

m

i

E
l

I

I

m

m

V0-092 Vol. II iv Su lecH

wm

. i

m

m
!

LIST OF ILLUSTRATIONS

I

w

m

2-1

2-2

2-3

2-4

4-1

4-2

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-10

5-11

5-12

5-13

5-14

5-15

Physical Network Model 2-2

Logical Network Structure of Processing Entities 2-3

Visibility Between Processing Entities 2-5

Mapping of Processing Entities to Ada Programs or Tasks 2-6

Calls on Open Waiting Normally Until Both Parties Have

Requested a Connection and the Connection Has Been Established 4-2

Behavior of the End of File Function 4-18

Notation for Network Communication Patterns 5-2

Notation for Program Structure 5-2

Flow of Messages from PAYLOAD DATA MANAGFA_ to DATA ANALYZER 5-3

Flow of Requests for Data and Averaged Sensor Readings 5-5

Structure of the Program to Provide Average Reading on Request 5-7

Flow of Messages Between FILE SERVER and Client 5-10

Program structure using Vlrtual_Clrcult_DellveryTemplate 5-15

Program structure using Datagram_Delivery_Template 5-17

Flow of MESSAGES to and from POWER SUPPLY MONITOR 5-18

Program-unit structure of POWER SUPPLY MONITOR 5-19

A Processing Entity with Datagram Streams Corresponding to
Different Priority Levels -

5-22

Task structure for processing bulletins of different priorities 5-24

Use of the Warning Retriever Task to Control the Order In which

Messages are Processed 5-29

Network communication with SENSOR MANAGER 5-32

Program-unit structure for SENSOR MANAGER 5-38

w

VO-092

ORIGI?,IAL P._GE IS
OF POOR QUAt.FW

v

,,I, r, .It_ F,(,f, ,,¢' trh,- Trrl_._,,._ _f F_,_ P',_w _'.,I

SO;=FeCH

Section 1

INTRODUCTION

I

m

The Space Station Data Management System (DHS) provides a network

operating system (NOS) for communication services between network users. This

report describes a proposed network model and NOS communication services.

Since the Space Station has selected Ada as the programming language for DHS

software, the proposed NOS services build upon conceptual IIO models of Ada

for a parsimonious design. This approach leads to simpler services that can

be used in a straightforward way.

The set of NOS communication services contained in this report represents

an interface between the application layer (layer 7) and the presentation

layer (layer 6) of the Open Systems Interconnection (OSI) Basic Reference

Model. It is not intended as an interface set for a typical DHS user as not

all DMS users will be knowledgeable in Ada, but as one of several NOS

interface sets available to an Ada programmer who is developing applications

that use the NOS. Other NOS interface sets, such as virtual terminal, file

services etc. and DHS user interface sets are not addressed herein.

Section 2 of the report presents the proposed network model of the DHS.

Section 3 describes the functional requirements of the N0S communication

services; Section 4 provides the services that represent the application

programmer's interface to the NOS communication services; Section 5 includes

some example applications illustrating a wide range of flexible communication

capabilities.

I

J

l
I

r=i

U

i

g

m

m

u

W0-092 Vol. II I-I so -fec H

u

Section 2

NE'_ORK MODEL

The DMS network is represented as both a physical network and a logical

network. The physical network represents the actual hardware to support

program execution and communication. The topology of the network is not

significant in the discussion of the NOS but an aid in understanding network

terminology. The logical network represents the processing entities and their

relationships to support the mission requirements. A clear distinction

between these two views and an appropriate way to relate them to each other is

presented below. The kinds of N0S users are also defined.

w

w

w

2.1 Physical Netvork Model

The DMS network physical model is a hierarchical structure consisting of a

set of regions, each of which consists of a set of local area networks (LAN),

each of which consists of a set of nodes. The nodes are the physically

addressable units in the network. A region may be considered as a single

Space Station or ground control center. Regions are generally geographically

collocated collections of LAN's. Regions will typically access each other

with telecommunications, while LAN's within a region will typically have

hardwired access to each other.

Nodes may be implemented as a network interface unit (NIU) and a set of

processors and other equipment (e.g., sensors, control units, peripherals,

etc.). Processors which must access the network communicate through the NIU.

Communication between regions and LAN's is supported by network bridges that

may be implemented as special purpose NIU's. Each copy of the NOS will run

the same on different nodes. A node may contain one or more processors, but

this is hidden from the NOS. A special node executive (NE) may be required to

present a consistent processor model to the NOS.

V0-092 Vol. II 2-1 SO 'TeCH

Processors are not directly addressable on the DMS network. All DMS

network communications must be between nodes on the network. This does not

preclude the use of additional or special purpose networks that may exist

between processors and other equipment. Direct processor-to-processor

communication may use a variety of methods, but it does not use the DMS

network. Such communication is beyond the scope of the NOS. Figure 2-1

illustrates the physical model of the DMS network.

m

mm

=
g

m

i REGIO_

REGION

TELECOMMUNICATIONS

TYPICALLY

HAROWIRED

NOS

NE

OTHER EQUIPEMENT i

z

I

m

I

!111

m

m
I

B

m

imm

m

i

g

Figure 2-1. Physical Network Model m
R

W0-092 Vol. II 2-2 SOFTeCH

2.2 Logical Netvork Model

The logical model of the DMS network is not fully defined. Notions of

subsystems and processes do exist, but the explicit logical structure and

communication capabilities within and between subsystems are still evolving.

The following is a proposed logical network model that serves to reduce the

complexity of the software for the Space Station Program. Vhile the model is

recommended as an approach to system design, the specific services described

in Section 4 later do not require it. It is presented to provide a framework

for discussions within this report and as a concept for consideration within

the Space Station Program community.

w

w

--=

w

w

w

It is proposed the logical model of the DMS network be a hierarchical

structure consisting of groups of processing entities with logical addresses

that can communicate with certain restrictions. A Space Station processing

entity, such as the GN&C or Flight Control subsystem, may in turn contain a

group of entities that are its children. Subsystem entities may have parent

system entities. These system entities represent groups of subsystems with

common attributes. Likewise, the child entities of a subsystem may in turn be

parents of other subgroup processing entities. Children of the same parent

are siblings of each other.

processing entities.

}

Figure 2-2 illustrates the hierarchy of

m

Figure 2-2. Logical Network Structure of Processing Entities

_O-092 Vol. II 2-3 SOI=TeCH

w

One processing entity may communicate with another if it has access to its

logical name. Naming of entities is, however, restricted in accordance with a

visibility rule. The rule states a processing entity may only name its

ancestors and their siblings. (This rule is analogous to the scoping rules of

nested procedures in Ada.) Figure 2-3 depicts the visibility rule for entity

names. In the figure, each circle represents a processing entity, and

decomposition (children) is illustrated with circles inside circles. If the

surface of each circle is viewed as a one-way mirror allowing an entity to

"see" out of its circle then it can also "see" out of its ancestors' circles

and "see" the siblings of its ancestors. "Seeing" the entities implies the

logical name of the entity is accessible. Bowever, an entity cannot see

inside another's circle. The inner structure of an entity is hidden from

other entities.

am

i

D

M

This model does not necessarily preclude communication between two

arbitrary processing entities. While entities within two different subsystems

can not directly "see" each other, they may nevertheless need to communicate.

If entity A1 in subsystem A needs to send a datagram to entity B1 in subsystem

B, then entity A1 would address the datagram to subsystem B. Subsystem B is

then responsible to ensure the datagram is properly routed to entity B1. This

allows the internal structure of subsystem B to change, both logically and

physically on the network, without necessitating change to subsystem A as long

as the logical interfaces between the two subsystems did not change (i.e. the

specific function of entity BI expected by entity AI remains unchanged in

accordance with policy #3 in Appendix B of the Tinman DMS User's Manual).

This model reduces the complexity of the software by reducing the number

of visible interfaces within and between subsystems. It follows the principle

of information hiding which is a major concept of modern software engineering.

Software designs that adhere to this model result in systems that are

significantly less costly to modify as compared with more traditional flat

designs where every processing entity can, in principle, "see" every other

entity.

[]
i

u

U

m
u

i

m
u

m

m

m

V0-092 Vol. II 2-4 sol l'ec H

U

I

U

SURFACE OF
CIRCLES ARE
VIEWED AS
ONE-WAY
MIRRORS

©

PROCESSING EN17TIES
CAN 'SEE' OUT

SIBUNG ENTITIES
CAN 'SEE' EACH
OTHER

ENTITIESCAN'T 'SEE'
INSIDE OTHERS

w Flgure2-3. Visibility Betveen Processing Entities

--- .,.,

w

w

2.3 Happing of the, Logical Model Onto the Physical Model

The mechanism for the mapping of logical processing entities, such as

subsystems, onto physical processors that use the DMS network is the Ada

program and the NOS interfaces.

Processing entities, such as subsystems, are supported by a set of Ada

programs and/or tasks that call upon the NOS for communications services. The

NOS is responsible for maintaining the configuration of the system (including

the correspondence between the addresses of processing entities and the

addresses of physical nodes) and communication among different nodes in the

physical network.

===

W0-092 Vol. II 2-5

,,,, r,, :,,, r,,,,_ ¢ ",, ",I_ ¸;,.,,_., ,I _rl, _,e_: ..

SOFTecH

An effective mapping of processing entities to Ada programs and tasks can

aid in minimizing the cost of evolution, while a poor mapping may exasperate

the process. One recommended approach during the design process is that

designers map the logical model of processing entities in terms of the

physical model so that an Ada program represents one or more sibling entities.

Entities with different ancestors should not be grouped into the same Ada

program. The lowest level descendent processing entities should be

represented as tasks or main programs. Such a mapping is illustrated in

Figure 2-4. This type of mapping reduces the coupling between processing

entities and the side effects during evolution.

The way sibling entities are allocated to programs is influenced by a

number of factors including, but not limited to, the physical distribution of

entities across the network. Sibling entities that reside on different nodes

will be allocated to different programs unless a distributed Ada program

capability is available (i.e. tasks of a single program reside on different

network nodes). Sibling entities residing on the same node can be allocated to

the same program.

i

I

m
J

m

i

m

i

mm

mm

i
m

t_

t_
i

t_
mm

vsr
t._

i"

Figure 2-4.

m_
q
L_

m

0 •J_" m mmmm4ml

0 .Moc_ma Rww_i

Happing of Processing Entities to Ada Programs or Tasks

i

m

m

B

m

_0-092 Vol. II 2-6 SO eCH

m

I

m
m

Designers should take care when allocating processing entities to a

network node. If the no_e only supports a single Ada program then all

entities should be siblings. Nonsibling entities may be allocated to a node

if it supports multiprogramming since the entities may be mapped to different

programs.

It is emphasized that this recommended mapping of processing entities onto

the DMS network is performed during the software design phase and is not

required by the NOS proposed later in this report.

2.4 Users of the NOS

w

w

w

Processing entities communicate with each other using two kinds of

mechanisms. Entities mapped to different Ada programs will make explicit

calls upon the NOS at the Ada source-code level to communicate with each

other. The applications programmer is explicitly aware of this mapping and

makes use of the NOS services described later. These services constitute the

interface for the applications programmer. Thus, an Ada program is one type

of NOS user.

Entities mapped onto Ada tasks within the same program rendezvous to

effect communication. Thus, the second potential user of the NOS is the Ada

Run Time System (ARTS). The ARTS is responsible for communication among tasks

of an Ada program. If the single Ada program is distributed across the DMS

network, then the ARTS may require the NOS to effect the communication between

Ada tasks. Such use is implicit at the Ada source code level, since the NOS

calls are made by ARTS rather than explicitly in the Ada program. The set of

NOS interfaces for the ARTS may be different from those described in this

report.

w

W0-092 Vol. II 2-7 SOFTeCH

In the strictest sense only a few processing entities are direct users of

the NOS. These may be viewed as agents which act on the behalf of other

entitles for communication. The NOS interface described in this report

represents the lowest sublayer in the OSI applications layer and may actually

only be seen by the applications programmer who is designing and implementing

these agent processes. Indeed, processes at the subsystem level may not even

be aware the NOS is used for some purpose. For example, a DMS user may wish

to view information in a database. The information may be in a database local

to the network node or on a remote node. The process that handles the

operator query may pass the query on to an information system that in turn

must determine how to access the requested information. Whether the

information system can locate the information locally or must request services

from a remote information system may be entirely transparent to the process

that handled the operator's query.

Ill

m

i

B

m

z
mm

m

i

_I

l

J
I

llm

B

g

i

w

u

W0-092 Vol. II 2-8

I

O eCH
i

g

Section 3

RE0_S

w

w

w

m

w

Our services are designed to fulfill the following requirements:

I. Virtual-circuit (connection) service shall be provided. It shall be
possible to associate a priority with such a connection to guarantee that
the transport lag will not exceed a specified upper bound. No
communication shall take place over a virtual circuit until a connection
has been established. Unidirectional virtual-circuit connections shall be

provided. These can be combined to establish two-way communication.

2. Datagram (connectionless) service shall be provided. This will allow a
message to be sent to another processing entity without first establishing
a connection. A processing entity may have zero or more logical datagram
input streams, and a datagram is addressed to a particular stream.

3. It shall be possible to establish vlrtual-clrcult connections

by prior agreement between processing entities, without an exchange

of messages at the application-code level (OSl level 7); or

in response to a received message (by a datagram or over an existing

virtual circuit), in accordance with a previously agreed-upon

protocol, requesting that a virtual circuit be established for
transmission of messages belonging to one of a previously agreed upon

finite set of data types.

4. In establishing virtual circuits, it shall be possible for application
programmers to specify certain properties of the connection. These
properties might include the maximum acceptable transport lag, the degree

of error checking required, security constraints, whether or not network

resources supporting the connection should remain committed to the
connection between transmissions, and the relative priority of different

connections when contending for network resources.

5. In requesting virtual-circuit connections and addressing datagrams, only

logical names shall be used. These logical names shall make no reference

to the physical location or underlying implementation of a processing
entity.

6. In requesting virtual-circuit connections and addressing datagrams, a

processing entity outside of processing entity X shall not refer to the

internal structure of X. In particular, it shall not refer to lower-level

processing entities contained in X.

V0-092 Vol. II 3-1 SOFTeCH

7. Once a virtual-circuit connection has been established between two

processing entities, but not before then, the NOS shall provide connection

end-polnt identifier values to eac5 processing entity. All calls on the

NOS to perform virtual-circuit communications shall identify with a

connection end-point identifier the virtual circuit to be used.

8. A single virtual circuit or a single datagram stream shall be restricted

to messages of a single type. It shall be possible for Ada compile-time

consistency checks to detect attempts to use the same virtual-circult

connection for data of different types.

9. It should be possible for application programmers to isolate the decision

to communicate using virtual circuits or datagrams, limiting the amount of

program text that must be modified if this decision is changed.

I0. Flexibility should be provided to interleave the receipt of data with

other processing. In particular:

• It must be possible to wait for incoming data without busy waiting.

It must be possible to perform other activities while waiting for
data to arrive.

It must be possible to limit the amount of time a process waits for

data to arrive.

There should be a straightforward way to process several incoming
streams of data whose arrivals are interleaved.

m

mm

l

m
g

I

m

me

m

I

mm

B

m

i

g

w

W0-092 Vol. II 3-2 SOFTeCH

I

m

Section 4

SERVICES

This section describes the application programmer's interface to the

network operating system. The section consists of four subsections:

I.

1

.

1

An overview explaining the approach taken and the basic elements of the

interface. This subsection is tutorial, concentrating on concepts and
omitting details.

The actual syntactic interface, in the form of an Ada generic package
specification.

A detailed specification of the behavior of each subprogram provided as

part of the interface, including the exceptions that may be raised by each
subprogram.

A cross-reference by exception of the circumstances in which each

exception may be raised by the various subprograms.

4.1 Overviev

In designing our services, we have followed the design principle of

parsimony. Rather than introducing new conceptual models, we have built upon

the Ada conceptual model for file input/output to model network

communication. We have tried to provide the simplest interface that will

allow an application to obtain the required effects in a straightforward way.

When certain requirements can be met by use of Ada tasking constructs, we have

not duplicated those constructs in the network communication services.

w

w

An Ada program generally uses input/output operatlons to send data to or

receive data from entities outside the program. These entities, known as

external files, have traditionally been files in a file system (for example,

disk files) or devices (for example, a keyboard, a video display, or a

printer). An Ada program uses the Network Operating System to send data to or

N0-092 Vol. II 4-1 SOFTeCH

receive data from entities outside the program, so it Is appropriate to model

network communications as Input/output operations. In thls case, external

files correspond to virtual circuit connections or datagram streams.

Network communications services are provided to the Ada programmer through

a generic package called Network I0. This generic package closely resembles
w

the predefined generic package Sequential I0, the primary differences being in

the treatment of external files. Like Sequential IO, Network I0 is

Instantlated once for each type of data to be written or read. Any programmer

familiar vlth predefined Ada Input/output will find Network IO easy and
w

comfortable to work with. Sequential I0 has a simple interface, and

Network IO inherits this simplicity.

Processing entities may communicate through virtual circuits or by sending

datagrams. Some internal files (that is, file variables in a program) are

used for vlrtual-clrcult communication and some for datagram communication.

For virtual circuit communication, an open file is (in the jargon of the OSI

reference model) a connection end point. For datagram communication, an

internal output file corresponds to a stream of datagrams addressed to a

particular processing entity; and an internal input file corresponds to a

stream of datagrams addressed to the processing entity executing the program.

Sections 4.1.1 and 4.1.2 describe scenarios for vlrtual-circuit and datagram

communication, respectively, in greater detail.

=
m

D

m

m

mm

m

m
m

i

I

party A:

call Open ->

(end of call) <-

DMS: party B:

Wait for a matching call.

Establish a connection.

Place connection end-point
identifiers in each file

parameter and return from
each call.

<- call Open

-> (end of call)

Figure 4-I. Calls on Open Waiting Until Both Parties

Bave Requested a Connection and the Connection ffas Been Established

W0-092 Vol. II 4-2 SOFreCH

m
m

m

m

m

g

U

J

I

m

g

w

There is a potential requirement for limited multicastlng or broadcasting

of messages in emergency situations. The version of Network I0 presented in

this document does not address this requirement because there are many open

issues that must be resolved before the requirements are crystallized.

Section 4.1.3 discusses these issues.

E

w

m

w

The use of Network_10 does not in any way require the use of multitasking.

This is an important practical concern because of the inefficiency of

currently available Ada tasking implementations. Section 4.1.4 addresses

these concerns in greater detail.

4.1.1 Virtual-Circuit Communication

A virtual circuit is established by opening a file and disconnected by

closing the file. Connections are unidirectional, with the direction of data

transmission determined by the Mode parameter to Open. Unlike Sequential IO,
m

which uses a string to pass the name of an external file to Open, Network IO

uses a string to.pass the logical name of a processing entity to Open. The

Form parameter of Open is a string that describes properties of the connection

and of the negotiation for a connection. For a connection to be established,

both parties to the communication must call Open. This may happen by prior

agreement between the parties or in response to one party sending a datagram

to the other, for example. As shown in Figure 4-i, neither call on Open

completes until the NOS has received a call from both parties and established

a connection. When the calls complete, each internal file variable identifies

an end point of the connection. Each party may view the effect of a normal

call on Open as establishing a connection, without regard to the actions of

the other party.

A call on Write transmits data over the connection and a call on Read

obtains transmitted data. Transmitted messages are buffered by the NOS, so

additional calls on Write can take place before a call on Read obtains the

data transmitted by an earlier call on Write. Normally, if no data is

available for receipt, a call on Read waits for such data to become available.

WO-092 Vol. II 4-3 SOFTeCH

w

However, a procedure Set_Data_Unavailable_Response can be called to change the

native of a given file so that a Read operation invoked when no data is

available will raise the exception Data Unavailable immediately. When a
q

file's data-unavailable response is to fail, an unblocked input operation can

be achieved by a block statement containing a call on Read for that file and a

handler for Data Unavailable.

When the transmitting processing entity has written its last message, it

calls Close to sever the connection. Any data previously sent but not yet read

remains buffered so that it can be read by the receiving processing entity.

Once this data has been read, any attempt to read more data will raise the

exception End_Error (the exception raised by the standard Ada Input/output

packages when an attempt is made to read past the end of a file). The

function End Of File can be applied to an input file to avoid raising this

exception. The function returns False if there is data in the corresponding

buffer. It returns True if the buffer is empty and the sending processing

entity has called Close. Otherwise, the call waits for the sending processing

entity to either place another message in the buffer or to call Close. The

resulting relationship between a writer's calls on Write and Close and a
x

reader's calls on End Of File and Read are identical to the relationship

created by Sequentlal_IO. As observed by a single sending or receiving task,

the behavior of these subprograms when used for communication is identical to

the behavior of the corresponding Sequential_IO subprograms when used to write

or read disk files.

The receiving processing entity may sever the connection at any time by

calling Close, though it will typically do so only after End Of File becomes

true. This has no effect on the sending processing entity. It is analogous

to one program writing one hundred records to a disk file and another program

reading the first ten, then closing its input file. Any data buffered in a

virtual-circuit connection when the receiving processing entity calls Close is

permanently lost.

I

m

[]

m

Bmm

m

m

=

m

[]

I

m

m

mm

m

m

m

me

m
l

W0-092 Vol. II 4-4

SOFrecH

R

m

m

U

m

4.1.2 DatagraB Communication

Datagrams are addressed not to processing entities, but to datasram

streams. There are zero or more datagram streams associated with a processing

entity. These streams have names assigned by the network administrator and

exist permanently unless removed by the network administrator. Datagram

stream names for a given processing entity are unique, but different

processing entities may have identically named streams, so a datagram stream

is identified by the combination of a processing-entlty name and a stream name.

A processing entity may have more than one datagram stream. A given

datagram strea is used for transmitting messages of only one data type. By

prior agreement, different streams of the same data type might be used for

transmitting messages of different priorities. A processing entity can then

process highest-priority datagrams first by checking streams for input in

priority order. This approach is illustrated in Section 5.6.

Given the name of a datagram stream (consisting of a processing entity

name plus a stream name), the function Datagram_Output_File returns an

Internal-file value corresponding to that stream. Given the name of one of

the executing processing entity's own datagram streams, the function

Datagram_Input_File returns an internal-file variable corresponding to that

incoming datagram stream. Because the type for internal files is limited

private and no provision is made for copying datagram-stream internal files

into variables, internal files corresponding to datagram streams can only be

named by such function calls.

Conceptually, the internal files associated with datagram streams are

always open, even when the corresponding processing entities are inactive.

Indeed, since these internal files cannot be named by variables, they cannot

be passed to the Open or Close procedures, whose internal-file parameters are

of mode in out. (Datagram-stream files are analogous in this respect to the

standard input and output files of the predefined Ada package Text IO.)

Datagram-stream files may be passed to the End Of File function, but that

function always returns False for such files.

W0-092 Vol. II 4-5 SOFTeCH

A datagram is written to a particular stream of a particular processing entity by

a call of the form

Write (Datagram_Output_File (Entity, Stream), Message);

A processing entity reads a datagram from a particular incoming stream by a call

of the form

Read (Datagram_Input_File (Stream), Message);

From the caller's point of view, the behavq_r of Write and Read for datagram-

stream internal files is identical to their behavior for vlrtual-clrcult internal

files. The only difference is how those internal files are generated.

I

mm

i
mm

mm

If a datagram stream is empty and the corresponding file's data-unavailable

response is to watt, a task calling Read is blocked until a datagram arrives.

However, other tasks in the same processing entity may continue to execute. If

the task performing a Read accepts an entry call Just afterward to pass the

message on to another task, a conditional call on this the entry has the effect of

obtaining an incoming datagram if one is available and performing a specified

alternative action otherwise. Like virtual-clrcuit internal files, datagram

internal files can be set to trigger the Data Unavailable exception if Read is

called when no data is available. An application requiring incoming datagrams to

be fetched in a certain order, according to some property of the message contents,

can dedicate a task to fetching datagrams from an incoming stream as quickly as

they arrive and inserting them in a data structure based on the relevant

properties. The same task would accept entry calls to extract datagrams with

specified properties from the data structure. This approach is illustrated in

Section 5.7.

l
m,,

m

g

[]

mm

g

i

4.1.3 Broadcast and Multicast Services w
R

There may be a requirement to send the same message to several recipients

simultaneously. This is known as multicastin_. A Special case o£ multicasting is

broadcasting, sending the same message to all possible recipients. We are aware

of two roles a multicast capability can play. The first is to propagate alarm

messages in the event of a critical emergency. The second is to provide a way for

an application to send messages to a class of recipients (e.g., to all engineering

V0-092 Vol. II 4-6 so -fec H

u

-- i
l
w

R

E

I

I

consoles or to all subsystems requiring a time stamp) without requiring that the

sendln E program be modified every time a processing entity is added to or removed

from that class.

Network IO does not explicitly provide multicast capability, but there are
w

several ways to provide such a capability within the Network_IO model. Several

open issues must be resolved before a multicast capability can be specified.

Resolution of these issues, in turn, requires clarification of the requirements

for a multicast capability. This section outlines the relevant issues and

sketches several alternative approaches.

w

m

Multicast messages must be datagrams. A virtual-circuit connection is, by its

nature, a relationship between two parties that has been explicitly negotiated by

both parties. Therefore, multicasting must consist of sending multiple copies of

a single datagram to different datagram streams.

It is an underlying principle of Network_IO that each datagram stream is

restricted to messages of a single type. This is practically required by the

strong type system of the Ada language: A subprogram used to obtain incoming data

can only obtain data of one type; distinct subprograms are required to obtain data

of different types.*

Thus it does not make sense to broadcast a message to all datagram streams.

Messages can only be sent to streams of the appropriate type. This suggests that,

if broadcasting is to be supported, all broadcast datagrams should be of the same

type. The broadcast cannot be to all datagram streams, but only to streams of

this type.

1

1

*If subprograms are overloaded, there are still distinct subprograms, even

though they happen to have the same name. There must be enough information

at the point of the subprogram call (for example, the types of the actual

parameters) for the compiler to determine which one of the distinct

subprograms with a common name is being called. Generic units are applicable

to multiple types, but only after they are instantiated. A program does not

call a generic subprogram, but a specific instance of a generic subprogram.

m

W0-092 Vol. II 4-7 SO eCH

i
m

1

Ada's type restrictions support a fundamental design principle: A

processing entity should not be sent a message unless it is expecting that

kind of message and is prepared to handle it. Unlike people, processing

entities cannot be expected to receive information of an unanticipated form

and invent an appropriate response. If a processing entity is to receive an

emergency datagram, it should be via a stream dedicated to that purpose.

It is not clear that a universal broadcast is appropriate in an emergency.

Certain emergencies rill have to be announced to many subsystems throughout

the network, but there may be many processing entities that have no sensible

response to such an emergency. Broadcasting announcements to all processing

entities complicates programming, because each processing entity must

recognize the emergency announcements, even if only to ignore them. More

seriously, unnecessary broadcasting may slow down the transmission of the

emergency announcements to the processing entities vhere they are really

needed and divert system resources needed to respond to the emergency.

The role of each subsystem in responding to an emergency must be carefully

planned by system integrators. Universal broadcast can lead to the dangerous

assumption that, since emergency announcements have been broadcast to each of

several independently developed processing entities, the problem is somehov

taken care of. In fact, if a processing entity has an important role to play

in an emergency situation, this should be part of its interface specification.

In that case, a conscious decision rill be made to place the processing entity

on a multicast list for emergency announcements.

The current model of NetworkIO is capable of supporting multicasting.

One naive approach is simply for processing entities that must multicast

to explicitly transmit a separate copy of the datagram to all intended

recipients:

for I in MultiCast_List'Range loop
Write _

(Datagram_OutputFile (Multicast_List (1), "ALARM_STREAM"),
Message);

end loop;

-- Multicast List is an array of strings.

W0-092 Vol. II 4-8 SOFTeC:H

mm

mm

mm

mm

m

mm

I

m

mm

mm

I

I

U

[]

L

mm

mm

There are several problems with this approach:

u

The list of recipients must be managed by the program, requiring the

program (or a file read by the program) to be changed every time a

recipient is added or removed. It might be preferable for the

network administrator to maintain a single list that is somehow
identified by the application program.

Datagram_Output_File must be called anew for each recipient. It is
impossible to compute Internal-file values and store them in a table

ahead of time, because these values belong to a limited-private type.

Given the knowledge that the same message is to go to several

recipients, the NOS may be able to deliver datagrams more efficiently
than by repeated transmission of individual copies.

The first of these problems can be solved within the current design of

NetworkIO by establishing "a post-office processing entity" for each class of

recipients. The post-offlce processing entity would simply relay any message

it received to each processing entity on its recipient list. There would be

only one copy of the recipient list, maintained by the system administrator.

The second and third problems could be solved by implementing the

post-office processing entities as extensions of the NOS rather than as

ordinary application processing entities. Internally, the post-office

processing entities would be implemented in terms of low-level NOS operations

rather than in terms of Network I0, allowing the knowledge that there are

multiple recipients to exploited efficiently; but they would appear from the

outside to be ordinary processing entities. No change would be necessary to

the Network I0 interface provided to applications.

w

(Equivalently, the post-office processing entities could be thought of as

virtual processing entities that exist in name only. The NOS intercepts all

datagrams addressed to such processing entities and handles them specially, by

multicasting them. From the application programmer's point of view,

addressing a datagram to such a processing entity has the same effect as

addressing it to a multicast list.)

mm

w

W0-092 Vol. II 4-9

I

SOFTeCH

m

llm

4.1.4 The Role of Tasking

It is both convenient and stylistically appropriate to use Netvork_lO in

conjunction with multitasking, but this is by no means required. The

specification of Network_lO does not include tasks. Furthermore, an

application may use Network_lO without using multiple Ada tasks. Therefore,

concerns about the performance of multitasking in early Ada implementations do

not impede the effective use of Network_lO.

While Network I0 does not require the use of multitasking, it can be used
w

to its fullest potential in multitask designs. Order-of-magnitude

improvements in the performance of Ada multitasking implementations can be

expected in the near future and throughout the life of the Space Station.

Once these improvements are realized, important benefits will be achieved by

transition to a multitask approach. The design of NetworklO will facilitate

this transition.

1

I

lm

1

mm

mm

1

For an application receiving data from multiple asynchronous sources or

performing other processing while waiting for messages to arrive, the use of

multitasking greatly simplifies the logic of the application, resulting in

lower development costs, higher reliability, and substantially safer and

easier modification of the program. Concurrency is natural in such an

application, because there are several separate conceptual threads of events

with which the program must deal. By associating a task with each such

thread, one can construct a program whose structure corresponds directly to

the problem to be solved. Typically, this means providing one task to handle

each asynchronous source of input plus a central task to perform the main

processing. Ada's tasking features provide a straightforward way for the

programmer to control the synchronization of these tasks, simply and

explicitly, while isolating the logic of independent conceptual threads.

m
1

lm

ll

m

lib

As a practical matter, most early implementations of rendezvous are too

slow to be used for handling high-volume communications. To cope with this

reality, Network IO provides the ability to specify that a call on Read will

raise the exception Data Unavailable if no data is waiting to be read. This

W0-092 Vol. II 4-10 soFI'ecH

J

1

m

u

m
1

allows a single-task program (i.e., a program without any task units) to poll

for data and to interieave other processing with the polling. The

interleaving logic will be far more complex than the logic of a multitask

program, but the nonmultitasking use of Network_IO viii result in no more

complexity than any other nonmultitasking approach.

4.2 Specification of Network lO

Below is the Ada specification of the generic package Network I0. The

specification lists the types, subprograms, and exceptions constituting the

application programmer's interface to the Network Operating System and

describes the syntax for invoking the subprograms. The behavior of the

subprograms is described in Section 3.

w

w

w

u

w

w

W0-092

with lO_Exceptions;

generic

type MessageType is private;

package Network_IO is

type File_Type is limited private;
type File Mode is (In File, Out File);

type Data:UnavailableZResponse_Type is (Wait, Fail);

procedure Open

(File : in out FileType;
Mode : in File Mode;
Name : in String;

Form : in String);

procedure Close (File : in out File_Type);

function DatagramOutput_File

(Entity_Name : String;
Stream Name : String)

return File_Type;

function Datagram_Input_File

(Stream_Name : String) return File_Type;

Vol. II 4-11 SC;FTeCH

procedure Set Data Unavailable_Response

(File T in File_Type;

Response : Data_Unavailable_Response_Type);

procedure Read (File : in File_Type; Item : out Message_Type);

procedure Nrite (File : in File_Type; Item : out Message_Type);

function End_Of_File (File : in File_Type) return Boolean;

Data Unavailable : exception;
Stat_s Error

Mode EFror

Name-Error

Use Error

DevTce Error

End Error

Data Error

: exception renames lO_Exceptions.Status_Error;

: exception renames IO_Exceptions.Mode_Error;

: exception renames IO_Exceptions.Name Error;

: exception renames lO_Exceptions.Use Error;

: exception renames lO_Exceptions.DevTce Error;

: exception renames lO_Exceptions.End Er?or;

: exception renames lO_Exceptions.Dat__Error;

private

type File_Type is [irrelevant to user of Network_lO];

end Network_lO;

4.3 Behavior of Netvork_IO Subprograms

mm

m

m
mm

M

I

!

ms

m

mm

m

mm

This section describes the behavior of the seven subprograms provided by an

instance of the generic package Network_lO. In each case we begin by repeating

the Ada subprogram specification given in thegeneric package specification of

Section 2. This is followed by English text describing the behavior of the

subprogram. Finally, we enumerate the exceptions that may be raised by each

subprogram and the circumstances in which those exceptions are raised.

4.3.1 Open

m
mmm

M

mm

mm

procedure Open

(File : in out File_Type;
Mode : in File Mode;

Name : in String;

Form : in String);

B

m

A call on Open establishes a virtual-circuit connection to the processing

entity named by the Name parameter. The establishment of the connection obeys

the constraints specified in the Form parameter. The File parameter is set to

an open internal-file value identifying an end point of this connection. If

W0-092 Vo1. II 4-12 _O_T_CH

w

m
I

m
mm

L_

mm

the Mode value specified in the call on Open is Out_File, messages may be sent

over this connection by writing to the internal file. If the Mode value

specified in the call on Open is In File, messages may be received over this

connection, in the order in which they were sent, by reading from the internal

file.

w

w

w

=

w

m

w

[The syntax of the Form string and the full range of attributes
specifiable by the string are still to be deteruined. We have identified
the following attributes so far:

the role of the requested connection, s/loving the NOS to correctly
match multiple connection requests by the same pair of processing
entities

• the quality of service, including:

• the maximum acceptable transport lag for data transmission

whether bandwidth is to be reserved during the lifetime of the
connection or seized and released with each transmission

• whether error checking and correction is required

the time limit vlthln which the other party must also request the
connection before the request is abandoned

, security-related constraints

Using a string instead of a record type requires run-tlme interpretation
of the string. However, it allows new Form attributes to be defined
during the evolution of the NOS without recompiling all code that calls
Open. Furthermore, it is consistent with the Form parameter in Ada's
predefined input/output packages.]

Exceptions:

Open raises Status_Error if the internal file passed as File is
already open.

Open raises Name_Error if the string passed as Name is not a valid
logical name of a processing entity.

Open raises Use Error if a virtual connection cannot be established

subject to the constraints specified in the Mode parameter (including
the constraint to establish a connection within a certain amount of
time).

Open raises Device Error if a malfunction or overloading of the NOS
prevents completion of a connection.

W0-092 Vol. II 4-13 SOFTeCH

4.3.2 Close

procedure Close (File : in out File_Type);

Close severs the association between the internal file passed as File and

the corresponding connection end point, allowlng any NOS resources used by

that association to be released. Despite the severing of the association

between the internal file and the connection end point, the connection itself

remains in existence, preserving data that has been sent but not yet received,

until neither end point is associated with an internal file.

(Note: Programs opening files should close them once the files are no longer

needed, so that resources can be released.)

Exceptions:

• Close raises Status_Error if the internal file passed as File is not

open.

4.3.3 DataEran_OutputFile

function Datagram_Output_File

(Entity_Name : String;

Stream Name : String)

return File_Type;

Datagram_Output_File returns an open internal file corresponding to the

datagram stream named by Stream_Name belonging to the processing entity named

by Entity_Name. A datagram may be sent to that stream by writing to that

internal file.

b

m

m

m

m

l

B

t

I

I

I

I

Exceptions:

Datagram_Output_File raises Name Error if the string passed as

Entity Name is not the valid log[cai name of a processing entitY, or
if it is a valid name but Stream Name does not name one of that

processing entity's datagram streams.

Datagram Output_File raises Device Error if a malfunction or

overloading of the NOS prevents interpretation of the strings passed

as Entity_Name and Stream_Name.

_0-092 Vol. II 4-14 SO -FeCH

U

z
m

I

l

4.3.4 Data_ras_Input_File

function Datagram_Input_File

(Stream_Name : String) return File_Type;

Datagram_Input_File returns an open internal file corresponding to the

datagram stream named by Stream_Name belonging to the processing entity

executing the call. A datagram may be retrieved from that stream by reading

from that internal file.

Exceptions:

Datagram_Input File raises Name Error if the string passed as

Stream Name does not name a datagram stream of the processing entity

executing the call.

4.3.5 Set_Data_Unavailable..Response

=

w

procedure Set_Data Unavailable_Response

(File : in File..Type;

Response : Data_Unavailable_Response_Type);

Sets the current data-unavailable response for the input file passed as

File to the value passed as Response. A file's current data-unavailable

response affects the behavior of Read. The setting remains in effect until

termination of the main program or until another call on

Set_Data_Unavailable_Response. The initial data-unavailable response of a file

(set for virtual-circuit connection files when they are opened and for

datagram-stream files at the start of the main program) is Wait.

Exceptions:

w

w

Set_Data_Unavailable_Response raises Status_Error if the file passed

as File is not open.

Set Data_Unavailable_Response raises Mode_Error if the file passed as
File is open with a mode of Out File.

- =
W0-092 Vol. II 4-15 sOI TeCH

b

4.3.6 Read

procedure Read (File : in File_Type; Item : out Message_Type);

b

Read receives the next message from the input file passed as File and

places its value in the Item parameter. If the current data-unavailable

response of the file passed as File is Fail, the exception Data Unavailable is

raised. Unless it raises an exception, a call on Read does not complete until

a message is received.

R

m

m

Exceptions:

Read raises Data Unavailable if the current data-unavailable status

of the file passed as File is Fail and no message is immediately
available to be read.

Read raises Status_Error if the internal file passed as File is not
open.

Read raises Mode Error if the internal file passed as File is open
with a mode of 0ut File.

Read raises Device Error if a malfunction or overloading of the N0S
prevents receipt of the next message.

Read raises End Error if the internal file passed as File is
associated with-a virtual-circuit connection, the sender's connection

end point is no longer associated with an internal file, and the
connection contains no unreceived data.

In some cases, Read may raise Data Error if the message read cannot
be interpreted as a value of the t_pe Message Type. However, the NOS
is not required to raise this exception in all cases.

m
m

I

mm

I

B

m

B

B

R

4.3.7 _rite

procedure Write (File : in File_Type; Item : out Message_Type);

Write sends the value passed as Item to the output file passed as File.

m

g

I

WO-092 Vol. II 4-16 SOFTecH

m
m

I

Z

!

I

Rxceptiorm:

Write raises Status Error if the internal file passed as File is not
w

open.

Write raises Mode Error if the internal file passed as File is open

with a mode of In-File.

In some cases, Write may raise Device Error if a malfunction or

overloading of the NOS prevents receipt of the message. However, the

NOS is not required to raise this exception in all cases.

[For a virtual-clrcuit file, the raising of Device Error will depend

on the degree of error-checking specified in the FUrs parameter when

the file was opened.]

L_

w

E

4.3.8 End_OtFile

function End Of File (File : in File_Type) return Boolean;

Returns True if the internal file passed as File is associated with a

virtual-circuit connection, the sender's connection end point is no longer

associated with an internal file, and the connection contains no unrecelved

data. Returns False if the internal file passed as File is associated with a

datagram stream or if the internal file passed as File is associated with a

virtual-circuit connection that still contains unread data. If the internal

file passed as File is associated with a virtual-circuit connection, the

sender's connection end point is still associated with an internal file, and

the connection contains no unread data, End Of File does not return a value

until the sender either severs the association between the connection and its

output file (in which case True is returned) or sends another message (in

which case False is returned).

This behavior is summarized in Figure 4-2. Its net effect is to return

True for virtual-circuit files over which more data can be read, to return

False for virtual-circuit files over which there will be no more data to be

read, and to return False for all datagram-stream files at all times.

=

W0-092 Vol. II 4-17 SOFTeCH

l [unread I sender's l
case[kind of file[data left?[file open?[

i I

1 j

2 1

3 1
I

4 1

5 1

6 1

I I yes I
I yes + +
I I no I

4 4 +

I

I
action [

¥

return False

virtual

circuit no I yes I Wait for ease I
I [[1 or 4 to hold.[

[no J no J return True J
4 0 _ ÷

I yes I J I
datagran , _ NIA [return False [

I no I I I
+ 4 ! 4"

u

J

mm

I

F
m

m

Figure 4-2. Behavior of the End Of File Function
w

Exceptions:

End Of File raises Status_Error if the Internal file passed as File
is not open.

End Of File raises Mode Error if the internal file passed as File is
open wTth a mode o£ Out-File.

For vlrtual-circuit files, End Of File raises Device Error if a

malfunction or overloading of _he NOS prevents checking whether the

connection's other end point is still associated with an internal
file or whether the connection contains unread data.

4.4 Summary of Exceptions

This section reviews the information given in Section 3 about the raising

of exceptions. In this section, however, the information is organized by

exception instead of by subprogram.

4.4.1 Data Unavailable

Read raises Data Unavailable if the current data unavailable status of the

file passed as File is Fail and no message is immediately available to be

read.

V0-092 Vol. II 4-18 SOFTeCH

i

m

m
F
mm

m

g

m

l

m

L
m
m

m
i

l

mm

I

4.4.2 Status_Error

Open raises Status Error if the internal file passed as File is already

open. Close, Set_Data_Unavailable_Response, Read, Write, and End_Of_File raise

Status Error if the internal file passed as File is not open.
w

4.4.3 Mode_Error

Set_Data_Unavailable_Response, Read and End Of File raise Mode_Error if

the internal file passed as File is open with a mode of Out File. Write

raises Mode Error if the internal file passed as File is open with a mode of

In File.

4.4.4 Name_Error

w

Open raises Name Error if the string passed as Name is not a valid logical

name of a processing entity. Datagram_Output_File raises Name_Error if the

string passed as Entity_Name is not the valid logical name of a processing

entity, or if it is a valid name but Stream Name does not name one of that

processing entity's datagram streams. Datagram_Input_File raises Name_Error

if the string passed as Stream Name does not name a datagram stream of the

processing entity executing the call.

4.4.5 Use_Error

Open raises Use Error if a virtual connection cannot be established

subject to the constraints specified in the Mode parameter (including the

constraint to establish a connection within a certain amount of time).

I

w

W0-092 Vol. II 4-19 SOFTeCH

4.4.6 Device Error

In general, an operation raises Device Error if a malfunction or

overloading of the NOS prevents completion of the operation. Open raises

Devlce_Error if a connection cannot be established. Datagram_Output_File

raises Devlce_Error if the strings passed as Entity_Name and Stream_Name

cannot be interpreted. Read raises Device_Error if the next message cannot be

received. In some cases (depending on the level of error checking specified

when a virtual-circuit connection is established), Write may raise

Devlce_Error if the message being written cannot be received. For

virtual-clrcuit files, End Of File raises Devlce_rror if checks cannot be

made to determine whether the connection's other end point is still associated

with an internal file or whether the connection contains unread data.

m

mm

mm

z
m

B

I

4.4.7 End Error
,m
mm

Read raises End_Error if the internal file passed as File is associated

with a virtual-clrcuit connection, the sender's connection end point is no

longer associated with an internal file, and the connection contains no

unreceived data.

i
J

II

4.4.8 Data Error

In some cases, Read may raise Data_Error if the message read cannot be

interpreted as a value of the type Message_Type. However_ the NOS is not

required to raise this exception in all cases.

mm

=
m

i

l

l

M

W0-092 Vol. II 4-20 SC31 TeEH

I

l
I

I

=

i

i

Section 5

EXAMPLES OF USE

This section contains eight hypothetical applications illustrating how

Network_IO may be used to achieve a wide range of flexible network-

communication capabilities. Each example contains actual Ada code, though in

some cases we have used bracketed, underlined text in place of code dealing

with details irrelevant to network communications. Ve have used two kinds of

illustratioas to represent the structure of the examples graphically.

To represent the pattern of network communications, we use diagrams like

Figure 5-1. Circles represen_ processing entities and rectangular strips

extending from the circles represent datagram streams. A jagged arrow from a

circle to a strip representing a datagram stream indicates that a datagram may

be sent from the processing entity represented by the first circle to the

datagram stream represented by the strip. A vlrtual-circult connection

between two processing entities is represented by a line with a plug at each

end plugged into the corresponding circle. An arrowhead on the line indicates

the direction of the connection. The diagram depicts potential communication

paths. It does not indicate the circumstances under which datagrams are

actually sent or virtual circuits are actually established, nor the order in

which these things happen.

To represent the structure of an Ada program, we use diagrams like Figure

5-2. Large parallelograms represent concurrent tasks and small embedded

parallelograms represent entries of that task. Rectangles with embedded

rectangles represent packages and the embedded rectangles represent

subprograms provided by that package. Stand-alone rectangles represent

separately compiled subprograms. Large solid arrows represent procedure and

entry calls and point from the caller to the called subprogram or entry.

Small arrows represent data passed through parameters during a subprogram

or entry call and point from the producer of the data to its consumer.

_0-092 Vol. II 5-I sOl TecH

DATAGRAM

VIRTUAL.CIRCUrr DATAGRAM
CONNECTION STREAM

mm

Dm
Elm

I

m

!

m

J

Pigure 5-1. Notation for Netvork _mmnication Patterns
m
mm
mm

TASK 1 TASK 2

/ /
_ I_.NNPARAMETER

SUBPROGRAM 1

0..____PARAMETER l

IN PARAMETER

PACKAGE 1

y

SUBPROGRAM_2 J

SUBPROGRAM_3 J

SUBPROGRAM_4 I

Figure 5-2. Notation for Program Structure

%;0-092 Vol. II 5-2

m
m

F
J

m

IR

R

W

I

5.1 Processing a Bounded Sequence of Data

w

By prior agreement, the processing entity DATA ANALYZER and the processing
m

entity PAYLOAD DATA MANAGER are to establish a virtual-circuit connection.

PAYLOAD DATA MANAGER will transmit a sequence of Float values to

DATA_ANALYZER, then the connection will be removed. Figure 5-3 depicts the

flow of messages across the network.

w

Both processing entities instantiate Network IO as follows:

package Network Float IO is new Network IO (Float);

PAYLOAD DATA MANAGER
q

DATA

DATA ANALYZER

Figure 5-3.

W0-092 Vol. II

Flow of messages from PAYLOAD DATA MANAGER to DATA ANALYZER

5-3 SOl=reCH

PAYLOAD_DATA_MANAGER executes statements of the following form, where

0utput_File is a variable of type Network_Float_I0.File_Type, Form is a

variable of type String, and X is a variable of type Float:

Network_Float_IO.0pen

(Output File,

Network Float I0.0ut File,

"DATA ANALYZER",

Form)7

while [there is additional data to send] loop

[obtain the data and Elace it"Tn-_

Net-TC _e-fSat_- 6.Vf te t ' t Tiie, x);
end loop;

Network_Float_I0.Close (Output_File);

DATA_ANALYZER executes statements of the following form, where Input_File

is a variable of type Network_Float_IO.File_Type, Form is a variable of type

String, and Y is a variable of type Float:

Network_Float_I0.0pen

(Input File,

Network Float IO.In_File,

"PAYLOAD DATA-MANAGER",

Form);

while not Network Float IO.End Of File (Input_File) loop

Network Float IO.Read (Input_File, Y);

[process the dat____aain Z];
end loop;

g

Network Float IO.Close (Input File);

5.2 Performin_ Background Processin_ While Vaitin_ for Dataa_r_

A processing entity is responsible for taking sensor measurements every

second and maintaining the average of the five most recent measurements.

Every time a datagram arrives on the incoming stream REQUEST_STREAM, a return

datagram specifying the most recent average is to be sent to the stream named

in the incoming datagram. (The incoming datagram is analogous to ordinary

I

I

mm

I

B

I

m

B

m

I

D

im

_I

J

I

I

W0-092 Vol. II 5-4 somFecH

m

I

m
I

l

m
D

mail containing a return-address label to be used for sending a reply.) The

processing entity is to continue executing indefinitely. Figure 5-4 depicts

the flow of messages across the network.

ENTITY
REQUESTING

DATA

REQUEST

(tNCLUD!

Figure 5-4. Flov of Requests for Data and Averaged Sensor Readings

u

The solution for the processing entity providing averaged readings

consists of four compilation units:

The package Request_Package. This package is imported (using a with

clause) by the processing entity that computes averages and all--

processing entities that communicate with that processing entity, to
define the common data type these processing entities use for

requests for data.

_0-092 Vol. II 5-5 SOFTeCH

m

A main program consisting of a task Communication Task that receives

and replies to datagrams and a task Averaging Task that takes
periodic measurements and provides averages upon request.

A subunit for the Communication_Task body, showing how Network I0 is
used.

• A subunit for the Averaging_Task body.

The Averaglng_Task body is not directly relevant to network

communications, but is supplied for completeness. Ne do not show the library

procedure Read_Sensor imported by AveragingTask to actually drive the sensor

and obtain a reading. Figure 5-5 shows the relationships of the program units

and the data flow among them.

package Request_Package is

type Request_Type is
record

Requestor_Part : String (I .. 128);
Stream Part : String (I .. 64);

end record;

end Request_Package;

W

R

m
m

m

g

I

E

m
i

U

z
g

D

=--

w

m
m

l
D

I

_I

m

u

g

I

V0-092 Vol. II 5-6

m

J

SOFreCH
i

J

h

i

=

COMMUNICAI'ION TASK

o.., I

CLOSE J

DATAORAM_OUTPUT_FILE]

OATAGRAMINPu'IrlqLE J

READ]

WRITE J

END OF _LE I

REQUEST IO FLOAT IO

PACKAGE PACI_'_tlE

AVERAGH, IGTASK

=

REQUEST IO and FLOAT IO are both instances of the generic
package IqETWORK IO. (_OMMUNICATION TASK executes a loop that

is repeated once ev-ery time a request for"sensor data Is received.

AVERAGING TASK executes a loop that is executed once each time
its entry is c-ailed and once each time it is time to read new data

from the sensor. Neither task consumes processor cycles between

repetitions of its loop.

F

Figure 5-5. Structure of the Program to Provide Average Readings on Request

V0-092 Vol. II 5-7 so -recH

w

procedure Main_Program is

task Communication_Task;

task Averaging_Task is

entry Get_Average (Average : out Float);

end Averaglng_Task;

task body Communication Task is separate;

task body Averaging_Task is separate;

begin

null; -- All work done by Communication Task and

-- Averaging_Task.

end Maln,Frogram;

D

m

W

with Request_Package, Network_IO;

separate (Main_Program)

task body Communication Task Is

package Request_I0 is

new Network_IO (Request_Package.RequestType);

package Float I0 is new Network IO (Float);
-- w

Request : Request_Package.Request_Type;
Average : Float;

begin

loop

Request_IO.Read

(Request_lO.Datagram_Input_File ("REQUEST STREAM"),
Request);

Averaging_Task.CetAverage(Average);
.... _ _ _T! ::7 _ , :

(Float_IO'Datagram_OutputFile

(Request.Requestor Part, Request. Stream Part),
Average);

end loop;

end Communication_Task;

V0-092 Vol. II 5-8 SOI=TeCH

I

l

p
I

I

I

z:

il

I

!
I

i

I

m

I

I

i

I

with Calendar, Read Sensor; use Calendar;

separate (Main_Program)

task body Averaging_Task is

Next_Reading_Time : Time;

[other declarations]

begin

-- Initialization. No entry calls accepted until first five

-- readings have been obtained.

Next_Reading_Time := Clock;
for I in 1 .. 5 loop

[read th__eesensor and save the value read];

Next_ReadingTime := Next_Reading_Time + 1.0;

delay NextReadlng_Time - Clock;
end loop;

NextReading_Time := Next_Reading_Time + 1.0;

-- Routine processing. Wait for an entry call or

-- Next_ReadingTime to arrive.

loop
select

accept Get_Average (Average : out Float) do

[_lace the average of the last five readln_s
in Average];

end Get_Average;
or

delay Next_Reading_Time - Clock;

[read the sensor and update the list of readings];

Next_Reading_Time := Next_Reading_Time + 1.0;
end select;

end loop;

end Averaging_Task;

Communication Task remains blocked at the call on Read when waiting for an

incoming datagram, without consuming CPU time. Similarly, AveragingTask

remains suspended at the selective wait until except when it is briefly woken

up to retrieve a new reading or to deliver an average. It does not consume CPU

time while suspended.

WO-092 Vol. II 5-9 SOFTeCH

5.3 A File Server

A processing entity named FILE_SERVER has its own local file system.

Other processing entities requiring data from this file system send a datagram

to FILE_SERVER's datagram stream REQUEST_STREAM. FILE_SERVER responds by

sending an acknowledgment datagram to a stream named in the request and then

sending the contents of the file over a virtual circuit. (See Figure 5-6.)

The records in the file are of type Float. The datagram sent to REQUEST STREAM

belongs to the type declared in the following package:

J

U

i

mm

m

D

i

4

REQUEST STREAM FILE SERVER
n

FILE DATA

m

mm

J

Elm

Figure 5-6. Flov of Messages Betveen FILE SERVER and Client

package Servlce_Request_Package is

type Service Request Type is

record

Requestor Name : String (I., 64);

Acknowledgment_Stream_Name : String (i .. 64);

File Name : String (I .. 64);
end record;

end Service_Request_Package;

W0-092 Vol. II 5-10 Sol=reCH

L

h

=.=

m

m

m

mm
U

m

H
m
m

m

FILE_SERVER sends the acknowledgment datagram after trying to open the

specified file. The acknowledgment is of type Boolean, equal to True if the

file can be found and False otherwise. A virtual circuit connection is

established only if the file can be found.

w

=

Here is the FILE SERVER program:

with Service_Request_Package, Network_IO, Sequentlal_IO;

procedure File Server is
m

package Request I0 is
new Network I0

(Service[Request_Package. Servlce Request_Type);
package Local Float IO is new Sequential IO (Float);

package Boolean I0 Ts new Network IO (Boolean);

package Remote Float IO is new Net-work I0 (Float);

use Request_IO? Loca[Float_IO, BooleanIO, Remote_Float_IO;

Request : Service Request_Package.Servlce_Request_Type;
Input File : Local Float IO.File_Type;
Successful : Boolean; -

Output_File : Remote_Float_IO.FileType;
Data : Float;

Connection_Form : constant String := [some strin_ literal];

begin

loop

Read (Datagram_Input_File ("REOUEST_STREAM"), Request);

begin

Open (InputFile, In_File, Request.FileName);
Successful :- True;

exception

when Name Error [Use Error =>
Successful := False;

end;

Vrite

(Datagram_Output_File
(Request.Requestor Name,

Request.Acknowledgment_StreamName),
Successful);

r

w

W0-092 Vol. II 5-ii so -;'ecN

if Successful then

Open
(Output File,

Out_File,

Request.Requestor_Name,
Connection Form);

while not End Of File (Input_File) loop
Read (Input_File, Data); -- Local Float I0.Read
Write (Output_File, Data); -- Remot_ Float IO.Vrite

end loop; - -

Close (Output_File);

Close (Input_File);

end if;

end loop;

end File_Server;

5.4 Converting Arriving Messages to Entry Calls

Often, incoming messages may arrive from several sources, interleaved in

an unpredictable way. From an abstract point of view, this situation

manifests several conceptual threads of activity. The most natural way to

model this in the Ada language is with tasking.

Ada provides a rich set of facilities for handling interleaved stimuli

from different sources. If such stimuli are presented to a central task as

entry calls, then the selective wait statement provides the central task with

a vlde range of capabilities, including the following:

to wait for stimuli from several sources and to respond to each
stimulus as it arrives, based on the source of the stimulus

to queue stimuli from a given source and only respond to them when
certain conditions hold

u

g

mm

mm

g

I

g

mD

m

m

U

U

V0-092 Vol. II 5-12 SO 'TecH

l

g

J

w

to perform other processing when no stimuli are waiting to be

processed

to perform other processing if no stimuli arrive within a specified

amount of time

Such stimuli may include datagrams and vlrtual-circuit messages arriving

from other processing entities, giving a processing entity great flexibility

in the handling of incoming messages.

The following generic package can be instantiated for each desired

virtual-clrcult connection to produce a task that waits for input on that

virtual circuit and calls a specified entry of a central task whenever a

message arrives. A second specified entry is called upon successful or

unsuccessful conclusion of the attempt to establish a connection and a third

is called when the end of the file is detected. The type of the message, the

name of the sending processing entity, the Form string to be used in

establishing a connection, and the entries to be called are specified as

generic parameters:

generic

type Message_Type is private;

Sender : in String;

Form : in String;

with

procedure Signal_Connection_Attempt

(Successful : in Boolean);

with procedure Deliver_Message (Message: in Message_Type);

with procedure Signal_End;

package Virtual_Circuit_Delivery_Template is

end Virtual_Circuit_Delivery_Template;

UO-092 Vol. II 5-13 sO 'TeCH

with Network_IO;

package body Virtual_Clrcuit_Delivery_Template is

package Message_IO is new Network_IO (Message_Type);

task Message_Delivery_Task;

task body Message_Delivery_Task is

Input_File : Message_IO.File_Type;

Message : Message_Type;
Connection Failure : exception;

begin

begin

Message IO.Open

(Input_File, Message_IO.In_File, Sender, Form);

exception
when others =>

Signal_Connectlon_Attempt (Successful => False);

raise Connectlon_Failure; -- Abandon this task.
end;

Signal_Connection_Attempt (Successful => True);

while not Message_IO.End Of File (Input_File) loop

Message_IO.Read (Input_File, Message);

Deliver_Message (Message);
end loop;

Message_IO.Close (Input_File);
Signal_End;

end Message_Delivery_Task;

end Virtual Circuit Delivery Template;

Figure 5-7 shows the resulting program structure.

An almost identical generic package can be used to generate a call on a

specified entry every time a datagram arrives on a specified stream. In this

case, generic parameters specify the type of the datagram, the name of the

5-12 incoming datagram stream, and the entry to be called every time a

datagram arrives on the stream:

mm

mm

g

I

r
D

I

D

J

m

D

I

i

m
g

g

m

m

W0-092 Vol. II 5-14 SOFFeCH

i

U_

J

i

generic

type Message_Type is private;
Stream Name : in String;

with procedure Deliver_Message (Message:

package DatagramDellvery_Template is

end Datagram Delivery Template;

in MessageType);

w

w

_IHSTAI4CE OF VIRTUAL C|RCUIT_OEUVERY_TEMPIJ, TE_

/

m
tu
n,

TASK

IOPEN I

CLOSE J

DATAGRA M_OUTPU'r_FILE J

OATAGRAM_INPUT_FILE]

REAO]

WRITE]

ENO OF FILE]

MESSAGE IO

PACKAG'_

(11"111 CENTRAL TASK)

- jsm_u.co_EcnoNA

Entries of the central task are passed as generic parameters to the
instantlation of VIRTUAL CIRCUIT DELIVERY TEMPLATE. The entry
corresponding to DELIVE'R_MESSAGE is celled every time a message
is received, to pass the message to the central task.

Figure 5-7. Program structure using VirtualCircuit_Delivery_Template

w

W0-092 Vol. II 5-15 so -recN

wlth Network IO;

package body Datagram_Delivery_Template is

package Hessage_I0 is new Networkl0 (Message_Type);

task Message_Delivery_Task;

task body Message_Delivery_Task is

Message : Hessage_Type;
begin

loop

Message IO.Read

(Message IO.Datagram_Input_File (StreamName),
Message);

Deliver_Message (Message);
end loop;

end Message_Delivery_Task;

end Datagram_Delivery_Template;

Figure 5-8 shows the resulting program structure.

The remaining examples are based on Virtual_Clreuit_Deiivery_Tempiate and

Datagram Delivery_Template, and depict their use. Because these templates are

so useful for interleaved processing, we expect that they wlll be provided as

part of the NOS library.

lib

u

U

m
m

I

u

g

l

i

5.5 Merging Streams of Incomln_ Messages _I
lib

Processing entity ONE KW CELL_MANAGER manages a set of 1-kilowatt power

cells that are dynamically switched on-line and off-llne in groups.

Processing entity FIVE_KW CEL5 MANAGER does the same for a set of 5-kilowatt

power cells. Both theseprocessing entities have virtual-clrcuit connections

established, by prior agreement, with a third processing entity,

PONERSUPPLYMONITOR. Every time ONE KN CELL MANAGER or FIVE KV CELL HANAGER
m

switches a group of cells on or off, a message givlngrthe number of cells

switched is sent to POWER_SUPPLY MONITOR. A positive number indicates that

cells were switched on-line and a negative number indicates that cells were

switched off-line. POWER_SUPPLY HONITOR may also receive datagrams in stream

REQUEST STREAM requesting the total wattage of power cells currently on-line,

in which case it sends a reply to the return address given in the datagram.

mm

i

lib

m
I

g

mm

_0-092 Vol. II 5-16 SOFTecH --
I

g

IINSTANCI[OF OATAGiqAId OEUYElqY_T|MPI.AI"E)

/ MIESSAQI[_OIELIVtPiY_TASK' /

!
o-- .I

_ou J

*A,,_U' OV,_ ,U I

u I

j

L,NO.O_,nIJ .J

WtO
PACUOI

c_Ju. TASK)

/

Figure 5-8. Program structure using Datagram_Delivery_Template

As shown in Figure 5-9, POWER_SUPPLY_MONITOR must, in effect, merge three

streams of inputs -- a stream of notices about groups of 1-kilowatt cells, a

stream of notices about groups of 5-kilowatt cells, and a stream of requests

for totals -- into a single stream, to treat each incoming message as it

arrives. This can be done by a task with three entries, one for each input

stream. One of these entries will be called whenever a message arrives in the

corresponding input stream. The task will execute a selective wait for calls

on all three entries, thus processing incoming messages as they arrive.

WO-092 Vol. II 5-17 so reCH

mmm

Um

IBm

i

POWEFI_SUPPLY_MONITOF

ME

m

m
I
R

Ill

Figure 5-9. Flov of I_SSACES to and from POVKR SUPPLY MONITOR

The requests for total vattage are messages of the type provided by the

follovlng package:

package Request_Package is

type Request_Type is
record

Requestor Part : String (1 .. 128);

Stream Pa_t : String (I .. 64);

end record;

end Request_Package;

The york of POVER_SUPPLY_BOh'ITOR is done by the task-Monitor Task.

Instances of Virtual_Circuit_Delivery_Template and Datagram_Delivery_Template

are used to link the incoming virtual circuits and REOUEST STREAM to entries

of Monitor Task. The resulting program unit structure is shorn in Figure 5-10.

V0-092 Vol. II 5-18 soFrecH

MM

mm

I

I

i

m

I

I

m
m

m

D

m

procedure NullProcedure is

begin
null;

end Null Procedure;

package 0ne_KV_Message_Package is
new Virtual Circuit Delivery Template

(Message__Type => Integer,
Sender => "ONE KV CELL MANAGER",

Form => [some str_],

Signal_Connection Attempt =>
Monitor Task.Handle Connection,

Deliver Message => Monitor Task.Handle 1KW Group,

Signal_End => Null_Procedure);

package Five KW Message_Package Is

new Virtual Clrcuit_Delivery_Template

(Message-__Type => Integer,
Sender => "FIVE KV CELL MANAGER",

Form => [some strin_]7

Signal. Connection Attempt =>
Monltor_Task.Ha_dleConnection,

Deliver Message => Monitor Task.Handle 5 KV Group,

$1gnalEnd => Null_Procedure);

package Request Package is
new Datagram_Delivery_Template

(Message_Type => Request_Package.Request_Type,
Deliver Message => Monltor_Task.Handle_Request);

package Integer_lO is new Networkl0 (Integer);

task body Monitor_Task is separate;

begin

null; -- All work done by tasks.

end Power_Supply_Monitor;

separate (Power_Supply_Monitor)

task Monitor Task is

Connection Failure : exception;

Total Nattage : Integer := O;

V0-092 Vol. II 5-20

I

sO; 'ec H

PRKCEDING PAGE BLANK NOT FILMED

begin

for I in 1 .. 2 loop

accept Handle Connection (Successful : in Boolean) do

if not SucCessful then

raise Connectlon_Failure;

end if;

end Handle_Connectlon;

end loop;

loop

select

accept Handle_l_Kg_Group (Cell Count : in Integer) do

Total_Wattage :- Total_Vattage + Cell_Count; _
end Handle 1 KW Group;

or

accept Handle 5 gV Group (Cell Count : in Integer) do

Total_Vattage := Total_Wattage + 5 * Cell_Copnt;
end Randle 5 KV Group;

or

accept Handle_Request

(Request : in Request_Package.Request'_Type) do

Integer IO.Vrite

(Integer I0.Datagram_0utput_Flle

(Request.Requestor Part,

Request.Stream_Pa_t),

Total_Wattage);

end Handle_Request;

end select;

end loop;

end Monitor_Task;

Since the virtual-circuit connections are intended to remain in existence

permanently, there is no need to provide an entry to be called upon end of

file. The dummy procedure Null_Procedure is used as a generic actual

parameter in place of such an entry. The two instances of

Virtual_Circuit_Delivery_Template specify the same entry to be called upon

V0-092 Vol. II 5-21 SOFTeEH

l

i
l

mm

i

III

llm

lib

i

W

m
m

lib

m

BD

m

m

Im

Be
BB

i
i

lib

connection establishment. Thus the entry Handle_Connectlon is called twice

when Power_Supply_Monitor starts up. The for-loop at the beginning of the

Monitor Task body handles these calls.
w

5.6 Processin_ Data_rams of Different Priority

A processing entity is to process bulletins of three different priorities.

Bulletins are values of some type Bulletln_Type and are processed by calling

the library procedure Process_Bulletin. A bulletin should not be selected for

processing while a higher-priority bulletin is waiting.

,.r

Our solution is to establish three different datagram streams,

HIGH_PRIORITY_STREAM, MEDIUM_PRIORITY_STREAM, and LOV_PRIORITY_STREAM,

corresponding to the three different priority levels of bulletins. This

arrangement is illustrated in Figure 5-11. We declare a task with one entry

corresponding to each priority level.

HIGH_PRIORITY_STREAM lMSO,UMp.,o.rtvS_M

_ _ _ _1 Low Palo.r_S_SAM

i

Figure 5-11. A Processing Entity with Datagram Streams Corresponding

to Different Priority Levels

WO-092 Vol. II 5-22
SOl=reCH

task Bulletin Processor is
m

entry Deliver_High_Priority_Bulletin

(Bulletin : in Bulletin_Type);

entry Deliver_Medium_Priority_Bulletin

(Bulletin : in Bulletin_Type);

entry Deliver_Low Priority_Bulletin

(Bulletin : In-Bulletln_Type);

end Bulletin_Processor;

The following generic instantiatlons ensure that the appropriate entry is

called each time a datagram arrives at one of the streams:

i

mm

m

u

=

mm

i

i

mm

package High_Priority_Bulletin_Delivery_Package is

new Datagram_DellveryTemplate

(Message_Type => BulletlnType,

Stream Name => "RIGH PRIORITY_STREAM",

Deliver_Message => -

Bulletln_Processor.Dellver_Blgh_Prlority_Message);

package Medium_Prlority_Bulletin_Dellvery_Package is

new Datagram_DellveryTemplate

(Message_Type => Bulletln_Type,

Stream Name => "MEDIUM PRIORITY STREAM",

Deliver_Message => - -

Bulletln_Processor.Dellver_Medium_Priority_Hessage);

package Low Prlority_Bulletin_Delivery_Package is
new Datagram Dellvery_Template

(Message_Type => Bulletin Type,

Stream Name => "LOW PRIORITY STREAM",

Deliver_Message =_ - -

Bulletin_Processor. Deliver_Low_Priority_Message);

i

i

m
m

I

m

i

[]
mm

i

i

: =

m

i

m
HI

i

W

_0-092 Vol. II 5-23

i

SOFTeEH; i

m

II

w

The resulting program structure is shown in Figure 5-12.

m

HIGH_PRIORITY BULLETIN_DELIVERY_PACKAGE

//
MEDIUM_PIRIORrlrY_BUt.LETIN_DEUVERY PACI(AGE

/t/ //

BULLETIN_PROCESSOR

LOW PRIORrrY__ DELIYERY_PAC1(AGE

// //

High_Priority_Bulletin_Delivery_Package, Medium_Priority_Bulletin_-
Delivery_Package, and Low_Priority_Bulletin_Delivery_Package are instances of the

generic package Datagram_Delivery_Template. Each contains a task that calls the
corresponding entry of Bulletin Processor when a datagram arrives on the corre-

sponding stream.

Figure 5-12. Task structure for processing bulletins of different priorities

W0-092 Vol. II 5-24 SOFTecH

The Bulletin Processor task body is a straightforward application of the

selective wait statement with an else part: m

task body Bulletin Processor is

begin

loop

select

-- First check for a high-priority bulletin.

accept Deliver_High_Priority_Bulletin

(Bulletin : in Bulletin_Type) do

Process Bulletin (Bulletin);

end Deliver_High_Priority_Bulletin;

else

-- No high-prlority bulletin is waiting to be processed,

-- so consider medium- and low-priority bulletins.

select

-- First check for a mediumiprlority bulletin.

accept Deliver Medium Priority_Bulletin
(Bulletin :-in BulTetin_Type) do

Process Bulletin (Bulletin);

end Deliver_Hedlum_Priority_Bulletin;

else

-- No medium-priority bulletin is waiting to be

-- processed, so wait for the arrival of the first

-- bulletin of any priority.

select

accept Deliver_High Priorlty_Bulletin

(Bulletin : in Bulletin_Type) do

Process Bulletin (Bulletin);

end Deliver_High_Priority_Bulletin;

W0-092 Vol. II 5-25 SO -TeCH

I

E

m

I

m

i

mm

m

mm

i

mm

J

N

J

B

L_

or

accept Deliver Medium Priority_Bulletin

(Bulletin :-in Bulletin_Type) do

Process Bulletin (Bulletin);
q

end Deliver_MediumPriority_Bulletin;

or

accept Dellver_Low_Priority_Bulletln

(Bulletin : in Bulletin_Type) do

Process Bulletin (Bulletin);

end Deliver_Medium_Prlority_Bulletln;

end select;

end select;

end select;

end loop;

end Bulletln_Processor;

There are many ways to achieve priority-driven processing of incoming

messages. The cholce of datagrams for this example was arbitrary. We could

just as easily have established three virtual circuits corresponding to the

three bulletin priority levels and applied the same approach. The next

example illustrates a general scheme to use message contents to determine the

order in which messages are processed. Since these message contents could

include priority levels, the next example provides an alternative scheme for

achieving priority-driven processing of messages.

5.7 Using Message Contents to Control Order of Processing

A warning-system application has an incoming stream WARNING STREAM for

datagrams of the following type:

_O-092 Vol. II 5-26 sO 'TecH

type Warnlng_Type is
record

Category_Part : Category_Type;

Contents Part : Contents_Type;
end record;-

Category_Type is defined as follows:

type Category_Type is

(From_ground, From_Other_Station, From_This_Station);

The definition of Contents_Type is irrelevant to this example.

The application requires a way to retrieve the next incoming datagram with

a particular Category Part value, or to determine that no such datagram yet

exists. This capability vlil be supplied by the following task:

task Warning_Retriever is

entry Retrieve__arning (CategoryType)

(Contents : out Contents_Type);

entry DeliverWarnlng (Warning : in Warning_Type);

end Warnlng_Retrlever;

Retrieve_Warning is an .entrZ _ with one member for each Category_Type

value. A call on the entry family member Retrieve_Warning (From Ground), for

example, waits if necessary for a datagram with a Category_Part value of

From Ground to arrive, then delivers the datagram's Contents Part. To avoid

waiting if a datagram of the appropriate category has not arrived, the

application can use a conditional entr Z cal.__ll:

I

I

z
I

I

I

L

I

I

me

L_
[]

I

I

I

I

select

Retrieve_Warnlng (From_Ground) (Contents);

Warning Found := True;
else

Warning_Found := False;
end select;

I

m

I

V0-092 Vol. II 5-27 SO eCH

I

m
i
I

mm

The entry Deliver_Warning is not used by the application, but is used as

part of the implementation of the Warning_Retriever task, as shown in Figure

5-13. The Instantiation

w

package Warning_Retrieval Package is
new Datagram_Delivery_Template

(Message_Type => Warning_Type,
Stream Name => "WARNING STREAM",

DellveLMessage => Warning_Retriever.Deliver_Warning);

causes the Deliver_Warning entry to be called with a Warning_Type value every

time a datagram arrives on WARNING STREAM.

To implement the Warnlng_Retriever task, we assume the existence of a

generic package for flrst-in-first-out queues:

w

generic

type ElementType is private;

package Generlc_Queue_Package is

type Queue_Type is limited private;
-- Default initial value is an empty queue.

procedure Enqueue

(Queue : in out Queue Type; Item : in Element_Type);

procedure Dequeue

(Queue : in out Queue Type; Item : out Element_Type);

function Is Empty (Queue : Queue Type) return Boolean;

Empty_Queue_Error : exception;

private

type Queue_Type is [some type definition];

end Generlc Queue Package;

This is a template for a typical Ada package providing an abstract data

type and a set of operations for manipulating that type.

WO-092 Vol. II 5-28

]

SOFTeCH

w

HI

m
BE

//

U

u

m
m

I

mmum

mum

Warning_Retrieval_Package is an instance of Datagrem_Dellvery_Template. It con-
tains s task that calls Warning_Retriever.Deliver_Warning every time a datagram ar-

rives on WARNING STREAM. Internal to the WarningRetrlever task,
Queue_Package is'an Instance of Generic Queue_Package, used to maintain a sep-
arate queue for each category of warning_

Mm

U

h

I

Figure 5-13. Use of the Warning_Retriever Task to Control the Order

in Which Hessages are Processed

_0-092 Vol. II 5-29 SOFTeCH

U

m

U

i

g

i

The body of Warning_Retrlever is as follows:

w

w

z:

I

m

= :

n

task body Warning_Retriever is

package Queue_Package is

new Generic_Queue_Package (ContentsType);

use Queue_Package;

Queue Table : array (Category Type) of Queue_Type;

begin

loop

select

accept Deliver_Warning (Warning : in WarningType) do

Enqueue

(Queue Table (Warning.Category_Part),
Warnl_g.Contents_Part);

end Dellver_Warning;

or

or

when not Is Empty (Queue_Table (FromGround)) =>

accept Retrleve__Warning (From Ground)

(Contents : out Contents_Type) do

Dequeue (Queue_Table (From_Ground), Contents);

end Retrleve_Warnlng;

when not Is_Empty (Queue_Table (From_Other_Station)) =>

accept Retrieve_Warnlng (From Other Station)
(Contents : out Contents_Type) do

Dequeue

(Queue_Table (From_Other_Station), Contents);

end•Re trieve_Warni ng;

g

WO-O92 Vol. II 5-30

III

sol'Tee H

w

or

when not Is_Empty (Queue_Table (From_This_Station)) =>"

accept Retrieve_Warning (From This Station)
(Contents : out Contents_Type) do

Dequeue

(Queue_Table (From_ThisStation), Contents);

end Retrleve_Warning;

end select;

end loop;

end Varning_Retrlever;

Figure 5-13 illustrates the reiationship of the various program units.

m

i

m
i

I

m

m

m

ms

: 211

5.8 Using Data_,rass to Control Periodic Sampling

A processing entity SENSOR_MANAGER is responsible for providing periodic

sensor data to other processing entities upon request. SENSOR MANAGER can

service at most one other processing entity at a time. Service can be

requested by sending a datagram to CONNECTION_STREAM. The processing entity

currently being serviced can send subsequent datagrams to INTERVAL STREAM

requesting a change in sampling interval or to DISCONNECTION_STREAM releasing

SENSOR_WAGER to serve other processing entities. For each datagram received

on CONNECTION_STREAM, SENSOR_MANAGER sends an acknowledgment datagram of type

Boolean, equal to True if SENSOR MANAGER is available and False if

SENSOR_M_AG_is:busy. _If _SE_bR__AGER is available, a virtual-circuit

connection is established to send sensor readings to the requestor. See

Figure 5-14. _ =

l

B

n

mm

m

mm

mm

mm

L --

i

m

V0-092 Vol. II 5-31 SO eCH

m

I

t

[]

{INCLUDING'_

ON / Rm'URN]
REQU"TFO" CO..iOn _ *oozes J _

CONNECTION STREAM / "

TIME-TA_ED SENSOR READING

Figure 5-14. Network communication with SENSOR MANAGER

w

W

The following package declares the type o£ datagrams sent to

CONNECTION STREAM:

with Calendar;

package Service_RequestPackage is

type Service_RequestType is
record

Requestor_Name : String (I .. 64);
Acknowledgment Stream Name : String (I .. 64);

Initial Interval : Calendar.Duration;
end record?

end Service_Request_Package;

V0-092 Vol. II 5-32 SOFT'ec H

Datagrams sent to INTERVAL_STREAM are values of type Calendar.Duration and

datagrams sent to DISCONNECTION_STREAM belong to a record type with no

components. (The simple existence of a message conveys the required

information.) Sensor readings are time-tagged values of type Float, as

defined in the following package:

with Calendar_

package Time_Tagged_Float_Package is

type TimeTagged_Float_Type is
record

Data Part : Float;

Tag_Part : Calendar.Time;
end record;

end Time_Tagged_Float_Package;

These values are read by a library procedure Sample_Sensor and sent over the

virtual circuit.

We introduce a new library generic package Null_Datagram_Delivery_Template.

This package is similar in form and purpose to the generic package

Datagram_DellveryTemplate introduced earlier in Sectlon 5-4. However,

Null_Datagram Delivery_Template is specially tailored to the receipt of empty

datagrams like those to be sent on DISCONNECTION STREAM. The entry called upon

receipt of a message has no parameters. Use of Null_Datagram_Delivery_Template

instead of Datagram_Delivery_Tempiate avoids the work of passing a dummy entry

parameter that contains no information. Here is the text of Null Datagram -

Delivery_Template:

generic

Stream Name : in String;

with p?ocedure Signal_Message;

package Null_Datagram_Delivery_Template is

end Null_Datagram_Dellvery_Template;

l

mm

R

!
g

m

i

m

m

i

m

g

=

mm

m

B

m

mm

m

mm

J

W0-092 Vol. II 5-33 SO eCH
m

I

J

package body Null_Datagram_Delivery_Template is

type Null_Type is record null; end record;

task Message_Delivery_Task;

package Null_Message_f0 is new Network_10 (Null_Type);

task body Message_DeliveryTask is

Message : Null_Type;
begin

loop

Null_Message_lO.Read
(Null_Message_lO.Datagramlnput_Flle

(Stream_Name),
Message);

Signal_Message;
end loop;

end Message_DeliveryTask;

end Null_Datagram_Delivery_Template;

Here is the SENSOR MANAGER program:

with Service_Request_Package, Calendar, Network_lO;

procedure Sensor_Manager is

subtype Service_Request_Type is
Service_Request_Package. Service_Requesf_Type;

task Request Handler is

entry Request_Service (Request : in Service_Request_Type);
entry Request Interval Change

(New Inter_al : in Calendar.Duration);

entry End Service;

end Request Handler;

task body Request_Handler is separate;

V0-092 Vol. II 5-34 SOFTeCH

package Servtce_RequestDelivery Package is

new Datagram_Delivery_Template

(Message_Type -> Service_Request_Type,
Stream Name => "CONNECTION STREAM",

Deltve__.Message => Request_Handler.Request_Service);

package Interval Request_Delivery_Package is
new Da_agram_Delivery_Template

(Message_Type => Calendar.Duration,

Stream Name => "INTERVAL STREAM",

Deliver Message =>

Request_Handler.Request_Interval_Change);

package End_Request_Delivery_Package is

new Null_Datagram_Delivery_Template
(Stream Name => "DISCONNECTION STREAM"-,

Stgnal_Message => Request_Handle'.End_Service);

begin

null; -- All work done by tasks.

end Sensor_Manager;

with Time Tagged Float Package, Sample Sensor;
use Calendar; - -

separate (Sensor_Manager)

task body Request_Handler is

subtype Data Type is

Time_Tagged_Float_Package.Time_Tagged_FloatType;

package Acknowledgment_IO is new Network IO (Boolean);

package Data I0 is new Network IO (Data_Type);

use Acknowledgment_IO, Data_IO?

Output_File : Data lO.Flle_Type;
Current Interval : DuraTion;

Previous Sample Time : Time;

Next_Sample_Time : Time,;

Data : Data_Type;

Connection_Form : constant String :. [some strin K literal];

I

mm

IB

i

,,m

i

I

mll

I

m

D

mm

I

I

mm

W0-092 Vol. II 5-35 SOFFeCH
mm

J

v

begin

loop

accept Request Service

(Request : Tn Service_Request_Type) do

Open

(Output File,
Out FiTe,

Request.Requestor_Name,

Connection_Form);

Write

(Datagram_Output_File
(Request.Requestor Name,

Request.kcknowledgment_Stream_Name),
True);

Current Interval :ffiRequest.Initial Interval;

end Request Service;
m

Previous_Sample_Time := Clock - Current_Interval;

loop

Next Sample Time :-

P_evlous_Sample_Time + Current_Interval;

select

delay Next_Sample Time - Clock;
Sample Sensor (DaTa);

Write [Output_File, Data);

or

accept Request Service

(Request : Tn Service_Request_Type) do

Write

(Datagram_Output_File
(Request.Requestor Name,

Request'Ackn°wledgment-Stream-Name)'
False);

-- Busy with another processing entity.

end Request_Service;

m

V0-092 Vol. II 5-36 SOFTeCH

or

accept Request_Interval_Change

(New_Interval : in Duration) do

Current_Interval :- New_Interval;

end Request_Interval_Change;

or

accept End_Servlce;
exit;

end select;

end "loop;

Close (OutputFile);

end loop;

end Request__andler;

The outer loop in the task body is repeated once for every session

(consisting of a request for a virtual-circuit connection, a connection

followed by transmission of sensor data, zero or more interval changes, and a

request for disconnection). The inner loop is repeated once for each datagram

that arrives during a session. Figure 5-15 illustrates the program-unlt

structure.

i

I

mm

m
m
mm

mm

I

m
mm

m
I

Bml

u

J
mm

mm

mm

mN

D

g

V0-092 Vol. II 5-37

M

SO -TeCH _

m

,,.K_

M xdUlL.Ul

o,. !

•-,l_o,n_w ,u |

-" -'1

"" 1

in op pu j

m_TAaIqANmCNmPUW luLII

oav_ uw_ _u

mMo

am.ou,.m_u

AamONR,NB_II_ IRe KNTA I0
m

]

w

Acknowledgment_lO (used for acknowledgment datagrams) and Data IO (used to

send time-tagged sensor readings over a virtual-circuit connection) a_e both in.
stances of Network IO. Service_Request Delivery_Package is an instance of
Datagram_Delivery_Template that calls Request Handler.Request -

Service whenever a datagram arrives on CONNECTION STREAM. I'nterval .

Request_Delivery_Package is an instance of Datagram-Delivery_Template that calls
Request_Handler.Request Interval Change every time an datagram arrives on
INTERVAL STREAM. End_Request-Delivery_Package is an instance of
Nuil_Datagram_Delivery Template'that calls Request Handler.End Service every

time a datagram arrives on DISCONNECTION STREAI_. Each of these three in-

stances contains an instantlation of Network_lO, not shown here.

Figure 5-15. Program-trait structure for SENSOR HANAGER

_0-092 Vol. II 5-38

ORIGINAL PAGE _S
OF POOR QUALrTY

SOF/'eCH

m
I

I

li

ii

Ii

Em
R

m

m

i
m

U

I

g

i
I

II

m

m

ii

Im

U

z

I

I

